Advertisement

Magnetoencephalography System Based on Quantum Magnetic Sensors for Clinical Applications

  • Carmine GranataEmail author
  • Antonio Vettoliere
  • Oliviero Talamo
  • Paolo Silvestrini
  • Rosaria Rucco
  • Pier Paolo Sorrentino
  • Francesca Jacini
  • Fabio Baselice
  • Marianna Liparoti
  • Anna Lardone
  • Giuseppe Sorrentino
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

In this paper, we present the magnetoencephalography system developed by the Institute of Applied Sciences and Intelligent Systems of the National Research Council and recently installed in a clinical environment. The system employ ultra high sensitive magnetic sensors based on superconducting quantum interference devices (SQUIDs). SQUID sensors have been realized using a standard trilayer technology that ensures good performances over time and a good signal-to-noise ratio, even at low frequencies. They exhibit a spectral density of magnetic field noise as low as 2 fT/Hz1/2. Our system consists of 163 fully-integrated SQUID magnetometers, 154 channels and 9 references, and all of the operations are performed inside a magnetically-shielded room having a shielding factor of 56 dB at 1 Hz. Preliminary measurement have demonstrated the effectiveness of the MEG system to perform useful measurements for clinical and neuroscience investigations. Such a magnetoencephalography is the first system working in a clinical environment in Italy.

Keywords

SQUID Magnetometer Magnetoencephalography 

References

  1. 1.
    Granata, C., Vettoliere, A.: Nano superconducting quantum interference device: a powerful tool for nanoscale investigations. Phys. Rep. 614, 1 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Clarke, J., Braginski, A.I. (eds.): The SQUID Handbook Vol II: Fundamentals and Technology of SQUIDs and SQUID Systems. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim (2006)Google Scholar
  3. 3.
    Del Gratta, C., Pizzella, V., Tecchio, F., Romani, G.L.: Magnetoencephalography—a noninvasive brain imaging method with 1 ms time resolution. Rep. Progr. Phys. 64, 1759–1814 (2001)CrossRefGoogle Scholar
  4. 4.
    Stam, C.J., Nolte, G., Daffertshofer, A.: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28, 1178–1193 (2007)CrossRefGoogle Scholar
  5. 5.
    Tass, P., Rosenblum, M.G, Weule, J. Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A., Freund, H.-J.: Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phy. Rev. Lett. 81, 3291–3294 (1998)CrossRefGoogle Scholar
  6. 6.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).  https://doi.org/10.1038/nrn2575CrossRefGoogle Scholar
  7. 7.
    Van Wijk, B.C.M., Stam, C.J., Daffertshofer, A.: Comparing brain networks of different size and connectivity density using graph theory. PLoS One 5(10), e13701 (2010).  https://doi.org/10.1371/journal.pone.0013701CrossRefGoogle Scholar
  8. 8.
    Granata, C., Vettoliere, A., Rombetto, S., Nappi, C., Russo, M.: Performances of compact integrated superconducting magnetometers for biomagnetic imaging. J. Appl. Phys. 104(073905), 1–5 (2008)Google Scholar
  9. 9.
    Granata, C., Vettoliere, A., Russo, M.: Miniaturized superconducting quantum interference magnetometers for high sensitivity applications. Appl. Phys. Lett. 91, 122509 (2007)CrossRefGoogle Scholar
  10. 10.
    Rombetto, S., Granata, C., Vettoliere, A., Russo, M.: Multichannel system based on a high sensitivity superconductive sensor for magnetoencephalography. Sensors 14, 12114–12126 (2014)CrossRefGoogle Scholar
  11. 11.
    Gross, J., Baillet, S., Barnes, G.R., Henson, R.N., Hillebrand, A., Jensen, O., Jerbi, K., Litvak, V., Maess, B., Oostenveld, R., Parkkonen, L., Taylor, J.R., van Wassenhove, V., Wibral, M., Schoffelen, J.-M.: Good practice for conducting and reporting MEG research. Neuroimage 65, 349–63 (2013).  https://doi.org/10.1016/j.neuroimage.2012.10.001CrossRefGoogle Scholar
  12. 12.
    Barbati, G., Porcaro, C., Zappasodi, F., Rossini, P.M., Tecchio, F.: Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals. Clin. Neurophysiol. 115, 1220–1232 (2004).  https://doi.org/10.1016/j.clinph.2003.12.015CrossRefGoogle Scholar
  13. 13.
    Van Veen, B.D., Van Drongelen, W., Yuchtman, M., Suzuki, A.: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44 (1997)Google Scholar
  14. 14.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 15, 273–89 (2002).  https://doi.org/10.1006/nimg.2001.0978CrossRefGoogle Scholar
  15. 15.
    Nolte, G.: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys. Med. Biol. 48, 3637–3652 (2003).  https://doi.org/10.1088/0031-9155/48/22/002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carmine Granata
    • 1
    Email author
  • Antonio Vettoliere
    • 1
  • Oliviero Talamo
    • 1
  • Paolo Silvestrini
    • 2
  • Rosaria Rucco
    • 3
  • Pier Paolo Sorrentino
    • 4
  • Francesca Jacini
    • 3
  • Fabio Baselice
    • 4
  • Marianna Liparoti
    • 3
  • Anna Lardone
    • 3
  • Giuseppe Sorrentino
    • 1
    • 3
  1. 1.Institute of Applied Science and Intelligent Systems “E. Caianiello” of National Research CouncilPozzuoli (Naples)Italy
  2. 2.Mathematics and Physics DepartmentUniversity of Campania “L. Vanvitelli”CasertaItaly
  3. 3.Department of Motor Sciences and WellnessUniversity of Naples ParthenopeNaplesItaly
  4. 4.Department of EngineeringUniversity of Naples ParthenopeNaplesItaly

Personalised recommendations