Advertisement

M13 Bacteriophages as Bioreceptors in Biosensor Device

  • Laura M. De PlanoEmail author
  • Domenico Franco
  • Maria Giovanna Rizzo
  • Sara Crea
  • Grazia M. L. Messina
  • Giovanni Marletta
  • Salvatore P. P. GuglielminoEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

New recognition probes sensible, specific and robust is one of the major problems of biosensor assay. Detection biosensors has utilized antibodies or enzymes as bioreceptors; however, these have numerous disadvantages of limited binding sites and physico-chemical instabilities, can negatively affect capture and detection of target in diagnostic device. In this contest, Phage-Display provides a valuable technique for obtaining large amounts of specific and robustness bio-probes in a relatively short time. This technique relies on the ability of M13 bacteriophages (or phages) to display specific and selective target-binding peptides on major coat protein pVIII of their surface. In this work, we used P9b phage clone, displaying a foreign peptide QRKLAAKLT to selectively recognize Pseudomonas aeruginosa like bioreceptor. We describe different methods of functionalization to realize a selective bacteria biosensor surfaces. Several surfaces, such as latex and magnetic beads and polymeric surfaces such as mica, APTES and PEI, were functionalized by covalent bonds or physisorption with P9b. The efficiency of the surface functionalization procedures was evaluated by ELISA and AFM, while capture efficiency of the anchored phages has been assessed by plate count and Fluorescence microscopy. The results of this work pave the way to the use of phages as bioreceptor.

Keywords

Phage display Selective probes Functionalization Biosensor Pathogen detection 

References

  1. 1.
    Sposito, A.J., Kurdekar, A., Zhao, J., Hewlett, I.: Application of nanotechnology in biosensors for enhancing pathogen detection. WIREs Nanomed. Nanobiotechnol. (2018).  https://doi.org/10.1002/wnan.1512Google Scholar
  2. 2.
    Alhadrami, H.A.: Biosensors: Classifications, medical applications, and future prospective. Biotechnol. Appl. Biochem. 2017Google Scholar
  3. 3.
    Chen, J., Duncan, B., Wang, Z., Wang, L.-S., Rotello, V.M., Nugen, S.R.: Bacteriophage-based nanoprobes for rapid bacteria separation.  https://doi.org/10.1039/c5nr03779dCrossRefGoogle Scholar
  4. 4.
    Qi, H., Lu, H., Qiu, H.J., Petrenko, V.A., Liu, A.: Phagemid vectors for phage display: properties, characteristics and construction. J. Mol. Biol. 417(3), 129–143 (2012).  https://doi.org/10.1016/j.jmb.2012.01.038CrossRefGoogle Scholar
  5. 5.
    Carnazza, S., Gioffrè, G., Felici, F., Guglielmino, S.: Recombinant phage probes for Listeria monocytogenes. J. Phys. Condens. Matter 19, 395011 (13 pp) (2007). http://dx.doi.org/10.1088/0953-8984/19/39/395011Google Scholar
  6. 6.
    Liu, P., Han, L., Wanga, F., Petrenko, V.A., Liu, A.: Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus. Biosens. Bioelectron. 82, 195–203 (2016).  https://doi.org/10.1016/j.bios.2016.03.075CrossRefGoogle Scholar
  7. 7.
    Butler, J.C., Angelini, T., Tang, J.X., Wong, G.C.L.: Ion multivalence and like-charge polyelectrolyte attraction. Phys. Rev. Lett. 91, 028301 (2003)Google Scholar
  8. 8.
    Petrenko, V.A., Vodyanoy, V.J.: Phage display for detection of biological threat agents. J. Microbiol. Methods 53, 253–262 (2003) (PMID: 12654496)CrossRefGoogle Scholar
  9. 9.
    Huang, S., Yang, H., Lakshmanan, R.S., Johnson, M.L., Chen, I., Wan, J., Wikle, H.C., Petrenko, V.A, Barbaree, J.M., Cheng, Z.Y.: The effect of salt and phage concentrations on the binding sensitivity of magnetoelastic biosensors for Bacillus anthracis detection. In: Chin, B.A. (ed.) Biotechnol. Bioeng. 101, 1014–1021 (2008)Google Scholar
  10. 10.
    Carnazza, S., Foti, C., Gioffrè, G., Felici, F., Guglielmino, S.: Specific and selective probes for Pseudomonas aeruginosa from phage-displayed random peptide libraries. Biosens. Bioelectron. 23, 1137–1144 (2008)CrossRefGoogle Scholar
  11. 11.
    De Plano, L.M., Carnazza, S., Messina, G.M.L., Rizzo, M.G., Marletta, G., Guglielmino, S.P.P.: Specific and selective probes for Staphylococcus aureus from phage-displayed random peptide libraries. Colloids Surf. B Biointerfaces 157, 473–480 (2017)CrossRefGoogle Scholar
  12. 12.
    Calabrese, F., Carnazza, S., De Plano, L.M., Lentini, G., Franco, D., Guglielmino, S.P.P.: Phage-coated paramagnetic beads as selective and specific capture system for biosensor applications. In: XVIII AISEM Annual Conference (2015)Google Scholar
  13. 13.
    Lentini, G., Franco, D., Fazio, E., De Plano, L.M., Trusso, S., Carnazza, S., Neri, F., Guglielmino, S.P.P.: Rapid detection of Pseudomonas aeruginosa by phage-capture system coupled with micro-Raman spectroscopy. Vib. Spectrosc. 86, 1–7 (2016). http://dx.doi.org/10.1016/j.vibspec.2016.05.003CrossRefGoogle Scholar
  14. 14.
    Zimmermann, K., Hagedorn, H., Heucks, C.Chr., Hinrichsen, M., Ludwig, H.: The ionic properties of the filamentous bacteriophages Pfl and fd. J. Biol. Chem. 261(4), 1653–1655 (1986)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laura M. De Plano
    • 1
    Email author
  • Domenico Franco
    • 2
  • Maria Giovanna Rizzo
    • 1
  • Sara Crea
    • 1
  • Grazia M. L. Messina
    • 3
  • Giovanni Marletta
    • 3
  • Salvatore P. P. Guglielmino
    • 1
    Email author
  1. 1.Department of Chemical Sciences, Biological, Pharmaceutical and EnvironmentalUniversity of MessinaMessinaItaly
  2. 2.Department of Mathematical and Computational Sciences, Physical Science and Earth ScienceUniversity of MessinaMessinaItaly
  3. 3.LAMSUN (Laboratory for Molecular Surfaces and Nanotechnology), Department of Chemical SciencesUniversity of Catania and CSGICataniaItaly

Personalised recommendations