Advertisement

Effect of Humidity on the Hydrogen Sensing in Graphene Based Devices

  • Brigida AlfanoEmail author
  • Ettore Massera
  • Tiziana Polichetti
  • Maria Lucia Miglietta
  • Girolamo Di Francia
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

In this work, we investigate the effect of humidity variations on the sensing performance of Pd-graphene (GR) based devices. Palladium nanoparticles are directly synthetized onto GR sheets by microwave irradiation; the optimal palladium coverage results into a sensitive and fast hydrogen device. The dynamic conductance changes exposed to different hydrogen concentrations from 2.5 to 0.2% are displayed at room temperature, using humidified air as carrier gas at different Relative Humidity (RH) levels. The results show how the sensing curves in low humidity conditions have higher sensitivity with respect to humid environment. On the other hand, dry conditions negatively affect the sensing layer stability over time while humid conditions preserve the material.

Keywords

Graphene Metal decoration Hydrogen detection 

References

  1. 1.
    Yang, T., Zhao, X., He, Y., Zhu, H.: Graphene-based sensors. Graphene 157–174 (2018)Google Scholar
  2. 2.
    Schedin, F., Geim, A.K., Morozov, S.V., Hil, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)Google Scholar
  3. 3.
    Ko, G., Kim, H.Y., Ahn, J., Park, Y.M., Lee, K.Y., Kim, J.: Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 10(4), 1002–1004 (2010)Google Scholar
  4. 4.
    Ricciardella, F., Massera, E., Polichetti, T., Miglietta, M.L., Di Francia, G.: A calibrated graphene-based chemi-sensor for sub parts-per-million NO2 detection operating at room temperature. Appl. Phys. Lett. 104(18) (2014)Google Scholar
  5. 5.
    Gutés, A., Hsia, B., Sussman, A., Mickelson, W., Zettl, A., Carraro, C., Maboudian, R.: Graphene decoration with metal nanoparticles: towards easy integration for sensing applications. Nanoscale 4(2), 438–440 (2012)Google Scholar
  6. 6.
    Chatterjee, S.G., Chatterjee, S., Ray, A.K., Chakraborty, A.K.: Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015)Google Scholar
  7. 7.
    Esfandiar, A., Ghasemi, S., Iraji zad, A., Akhavan, O., Gholami, M.R.: The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing. Int. J. Hydrog Energy (37) (2012)Google Scholar
  8. 8.
    Chung, M.G., Kim, D.H., Seo, D.K., Kim, T., Im, H.U., Lee, H.M., Kim, Y.H., et al.: Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators B Chem. (169) 387–392 (2012)Google Scholar
  9. 9.
    Zhao, Z., Knight, M., Kumar, S., Eisenbraun, E.T., Carpenter, M.A.: Humidity effects on Pd/Au-based all-optical hydrogen sensors. Sens. Actuators B Chem. 129(2), 726–733 (2008)Google Scholar
  10. 10.
    Alfano, B., Polichetti, T., Mauriello, M., Miglietta, M.L., Ricciardella, F., Massera, E., Di Francia, G.: Modulating the sensing properties of graphene through an eco-friendly metal-decoration process. Sens. Actuators B Chem. 222, 1032–1042 (2016)Google Scholar
  11. 11.
    Alfano, B., Polichetti, T., Miglietta, M.L., Massera, E., Schiattarella, C., Ricciardella, F., Di Francia, G.: Fully eco-friendly H2 sensing device based on Pd-decorated graphene. Sens. Actuators B Chem. 239, 1144–1152 (2017)Google Scholar
  12. 12.
    Alfano, B., Massera, E., Polichetti, T., Miglietta, M.L., Di Francia, G.: Effect of palladium nanoparticle functionalization on the hydrogen gas sensing of graphene based chemi-resistive devices. Sens. Actuators B 253, 1163–1169 (2017)Google Scholar
  13. 13.
    Fedi, F., Miglietta, M.L., Polichetti, T., Ricciardella, F., Massera, E., Ninno, D., Di Francia, G.: A study on the physicochemical properties of hydroalcoholic solutions to improve the direct exfoliation of natural graphite down to few-layers graphene. Mater. Res. Express 2(3), 035601 (2015)Google Scholar
  14. 14.
    Sun, Y., Wang, H.H., Xia, M.: Single-walled carbon nanotubes modified with Pd nanoparticles: unique building blocks for high-performance, flexible hydrogen sensors. J. Phys. Chem. C 112(4), 1250–1259 (2008)Google Scholar
  15. 15.
    Chung, M.G., Kim, D.H., Seo, D.K., Kim, T., Im, H.U., Lee, H.M., Kim, Y.H., et al.: Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators B Chem. (169) 387–392 (2012)Google Scholar
  16. 16.
    Zhao, Z., Knight, M., Kumar, S., Eisenbraun, E.T., Carpenter, M.A.: Humidity effects on Pd/Au-based all-optical hydrogen sensors. Sens. Actuators B Chem. 129(2), 726–733 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Brigida Alfano
    • 1
    Email author
  • Ettore Massera
    • 1
  • Tiziana Polichetti
    • 1
  • Maria Lucia Miglietta
    • 1
  • Girolamo Di Francia
    • 1
  1. 1.ENEAPortici (Naples)Italy

Personalised recommendations