Advertisement

A Silicon-Based Biosensor for Bacterial Pathogens Detection

  • Roberto Verardo
  • Salvatore PetraliaEmail author
  • Claudio Schneider
  • Enio Klaric
  • Maria Grazia Amore
  • Giuseppe Tosto
  • Sabrina Conoci
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

The miniaturization of integrated nucleic acid testing devices represents a critical step toward the development of portable systems able to offer sample-in-answer-out diagnostic analysis. The conventional molecular testing workflow involves laboratory infrastructures and well-trained staff. Here we present a versatile, user-friendly miniaturized Lab-on-Chip device for the molecular diagnostics of infectious diseases. It is composed of a polycarbonate ring and a silicon chip; a customized reader integrating electronic and optical modules was developed for driving the thermal and optical processes. We report the results obtained using our device for the sample processing and detection of gram-negative opportunistic pathogenic bacteria.

Keywords

Point-of-care diagnostics Nucleic acid testing Infectious diseases 

References

  1. 1.
    Petralia, S., Verardo, R., et al.: Sens. Actuators B Chem. 187, 99 (2013)CrossRefGoogle Scholar
  2. 2.
    Yager, P., Domingo, G.J., Gerdes, J.: Annu. Rev. Biomed. Eng. 10, 107–144 (2008)CrossRefGoogle Scholar
  3. 3.
    Petralia, S., Sciuto, E., Conoci, S.: A novel miniaturized biofilter based on silicon micropillars for nucleic acid extraction. Analyst 142, 140–146 (2017)CrossRefGoogle Scholar
  4. 4.
    Foglieni, B., Brisci, A., San Biagio, F., Di Pietro, P., Petralia, S., Conoci, S., Ferrari, M., Cremonesi, L.: Clin. Chem. Lab. Med. 48, 329–336 (2010)CrossRefGoogle Scholar
  5. 5.
    Petralia, S., Conoci, S.: PCR technologies for point of care testing: progress and perspectives. ACS Sens. 2, 876–891 (2017)CrossRefGoogle Scholar
  6. 6.
    Petralia, S., Sciuto, E.L., Di Pietro, M.L., Zimbone, M., Grimaldi, M.G., Conoci, S.: Innovative chemical strategy for PCR-free genetic detection of pathogens by an integrated electrochemical biosensor. Analyst 42, 2090–2093 (2017)CrossRefGoogle Scholar
  7. 7.
    Fernández-Carballo, B.L., McGuiness, I., McBeth, C., Kalashnikov, M., Borrós, S., Sharon, A., Sauer-Budge, A.F.: Low-cost, real-time, continuous flow PCR system for pathogen detection. Biomed. Microdevices 18(2), 34 (2016)Google Scholar
  8. 8.
    Hsieh, K., Ferguson, S.B., Eisenstein, M., Plaxco, K.W., Soh, H.T.: Integrated electrochemical microsystems for genetic detection of pathogens at the point of care. Acc. Chem. Res. 48, 911–920 (2015)CrossRefGoogle Scholar
  9. 9.
    Rijal, K., Mutharasan, R.: A method for DNA-based detection of E. coli O157:H7 in proteinous background using piezoelectric-excited cantilever sensors. Analyst 138, 2943–2950 (2013)CrossRefGoogle Scholar
  10. 10.
    Hsu, S.H., Lin, Y.Y., Lu, S.H., Tsai, I.F., Lu, Y.T., Ho, H.S.: Mycobacterium tuberculosis DNA detection using surface plasmon resonance modulated by telecommunication wavelength. Sensors 14, 458–467 (2013)CrossRefGoogle Scholar
  11. 11.
    Guarnaccia, M., Iemmolo, R., Petralia, S., Conoci, S., Cavallaro, S.: Miniaturized real-time PCR on a Q3 system for rapid KRAS genotyping. Sensors 17, 831 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LNCIB, Laboratorio Nazionale del Consorzio Interuniversitario per le BiotecnologieTriesteItaly
  2. 2.STMicroelectronicsCataniaItaly

Personalised recommendations