Advertisement

A Novel Lab-on-Disk System for Pathogen Nucleic Acids Analysis in Infectious Diseases

  • Emanuele Luigi SciutoEmail author
  • Salvatore PetraliaEmail author
  • Sabrina Conoci
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

The miniaturization of Real Time PCR (qPCR) systems is a crucial point towards the development of “genetic point-of-care” (PoC) that are able to offer sample-in-answer-out diagnostic analysis. Centralized laboratories and specialized staffs are needed for conventional DNA analysis. To solve this issue, we propose an innovative easy-to-use PoC technology based on a Lab-on-Disk miniaturized system, integrating nucleic acids extraction process based on Mags-Beads technology and detection based on qPCR. Lab-on-Disk system is composed by a polycarbonate disk with reagent-on-board for DNA extraction and a qPCR silicon-chip. A customized reader integrating electronic and optical modules was developed for driving the polycarbonate disk. Here we present results in the detection of Hepatitis B Virus (HBV) genome.

Keywords

Pathogen DNA extraction/detection Microfluidics Magnetic beads QPCR 

Notes

Acknowledgements

The authors acknowledge HSG-IMIT for the disk design development and CLONIT for providing HBV sample for the extraction and detection tests.

References

  1. 1.
    Yager, P., Domingo, G.J., Gerdes, J.: Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10, 107–144 (2008)CrossRefGoogle Scholar
  2. 2.
    Mabey, D., Peeling, R.W., Ustianowski, A., Perkins, M.D.: Diagnostics for the developing world. Nat. Rev. Microbiol. 2, 231–240 (2004)CrossRefGoogle Scholar
  3. 3.
    Petralia, S., Conoci, S.: PCR Technologies for point of care testing: progress and perspectives. ACS Sens. 2, 876–891 (2017)CrossRefGoogle Scholar
  4. 4.
    Sambrook, J., Russel, D.: Molecular Cloning: A Laboratory Manual, vol. 3, 3rd edn. Cold Spring Harbor Laboratory Press, New York, NY, USA (2001)Google Scholar
  5. 5.
    Chomczynski, P., Sacchi, N.: The single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction: twenty-something years on. Nat. Protoc. 1(2), 581–585 (2006)CrossRefGoogle Scholar
  6. 6.
    Padhye, V.V., York, C., Burkiewiez, A.: Nucleic acid purification on silica gel and glass mixture. United States patent US 5658548, Promega Corporation (1997)Google Scholar
  7. 7.
    Berensmeier, S.: Magnetic particles for the separation and purification of nucleic acids. Appl. Microbiol. Biotechnol. 73(3), 495–504 (2006)CrossRefGoogle Scholar
  8. 8.
    Chen, L., Manz, A., Day, P.J.R.: Total nucleic acid analysis integrated on microfluidic devices. Lab Chip 7, 1413–1423 (2007)CrossRefGoogle Scholar
  9. 9.
    Petralia, S., Sciuto, E., Conoci, S.: A novel miniaturized biofilter based on silicon micropillars for nucleic acid extraction. Analyst 142, 140–146 (2017)CrossRefGoogle Scholar
  10. 10.
    Benitez, J.J., et al.: Microfluidic extraction, stretching and analysis of human chromosomal DNA from single cells. Lab Chip 12, 4848–4854 (2012)CrossRefGoogle Scholar
  11. 11.
    Breadmore, M.C., et al.: Microchip-based purification of DNA from biological samples. Anal. Chem. 75, 1880–1886 (2003)CrossRefGoogle Scholar
  12. 12.
    Chen, X., Cui, D., Liu, C., Li, H., Chen, J.: Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal. Chim. Acta 584, 237–243 (2007)CrossRefGoogle Scholar
  13. 13.
    Cady, N.C., Stelick, S., Batt, C.A.: Nucleic acid purification using microfabricated silicon structures. Biosens. Bioelectron. 19, 59–66 (2003)CrossRefGoogle Scholar
  14. 14.
    Hwang, K.-Y., Lim, H.-K., Jung, S.-Y., Namkoong, K., Kim, J.-H., Huh, N., Ko, C., Park, J.-C.: Bacterial DNA sample preparation from whole blood using surface-modified Si pillar arrays. Anal. Chem. 80, 7786–7791 (2008)CrossRefGoogle Scholar
  15. 15.
    Hegab, H.M., Soliman, M., Ebrahim, S., Op de Beeck, M.: In-flow DNA extraction using on-chip microfluidic amino-coated silicon micropillar array filter. J. Bionsens. Bioelectron. 4, 1–6 (2013)Google Scholar
  16. 16.
    Petralia, S., Ventimiglia, G.: A facile and fast chemical process to manufacture epoxy-silane coating on plastic substrate for biomolecules sensing applications. BioNanoScience 4, 226–231 (2014)CrossRefGoogle Scholar
  17. 17.
    Petralia, S., Castagna, M.E., Motta, D., Conoci, S.: Miniaturized electrically actuated microfluidic system for biosensor applications. BioNanoScience 6, 139–145 (2016)CrossRefGoogle Scholar
  18. 18.
    Fernández-Carballo, B.L., McGuiness, I., McBeth, C., Kalashnikov, M., Borrós, S., Sharon, A., Sauer-Budge, A.F.: Low-cost, real-time, continuous flow PCR system for pathogen detection. Biomed. Microdevices 18(2), 34 (2016)Google Scholar
  19. 19.
    Hsieh, K., Ferguson, S.B., Eisenstein, M., Plaxco, K.W., Soh, H.T.: Integrated electrochemical microsystems for genetic detection of pathogens at the point of care. Acc. Chem. Res. 48, 911–920 (2015)CrossRefGoogle Scholar
  20. 20.
    Rijal, K., Mutharasan, R.: A method for DNA-based detection of E. coli O157:H7 in proteinous background using piezoelectric-excited cantilever sensors. Analyst 138, 2943–2950 (2013)CrossRefGoogle Scholar
  21. 21.
    Patel, M.K., Solanki, P.R., Kumar, A., Khare, S., Gupta, S.: Electrochemical DNA sensor for Neisseria meningitidis detection. Biosens. Bioelectron. 25, 2586–2591 (2010)CrossRefGoogle Scholar
  22. 22.
    Petralia, S., Sciuto, E.L., Di Pietro, M.L., Zimbone, M., Grimaldi, M.G., Conoci, S.: Innovative chemical strategy for PCR-free genetic detection of pathogens by an integrated electrochemical biosensor. Analyst 42, 2090–2093 (2017)CrossRefGoogle Scholar
  23. 23.
    Petralia, S., Castagna, M.E., Cappello, E., Puntoriero, F., Trovato, E., Gagliano, A., Conoci, S.: A miniaturized silicon based device for nucleic acids electrochemical detection, 2015. Sens. Bio-Sens. Res. 6, 90–94 (2015)CrossRefGoogle Scholar
  24. 24.
    Pang, S., Gao, Y., Li, Y., Liu, S., Su, X.: A novel sensing strategy for the detection of Staphylococcus aureus DNA by using a graphene oxide-based fluorescent probe. Analyst 138, 2749–2754 (2013)CrossRefGoogle Scholar
  25. 25.
    Hsu, S.H., Lin, Y.Y., Lu, S.H., Tsai, I.F., Lu, Y.T., Ho, H.S.: Mycobacterium tuberculosis DNA detection using surface plasmon resonance modulated by telecommunication wavelength. Sensors 14, 458–467 (2013)CrossRefGoogle Scholar
  26. 26.
    Foglieni, B., Brisci, A., San Biagio, F., Di Pietro, P., Petralia, S., Conoci, S., Ferrari, M., Cremonesi, L.: Integrated PCR amplification and detection processes on a Lab-on-Chip platform: A new advanced solution for molecular diagnostics. Clin. Chem. Lab. Med. 48, 329–336 (2010)Google Scholar
  27. 27.
    Spata, M.O., Castagna, M.E., Conoci, S.: Image data analysis in qPCR: A method for smart analysis of DNA amplification. Sens. Bio-Sens. Res. 6, 79–84 (2015)CrossRefGoogle Scholar
  28. 28.
    Guarnaccia, M., Iemmolo, R., Petralia, S., Conoci, S., Cavallaro, S.: Miniaturized real-time PCR on a Q3 system for rapid KRAS genotyping. Sensors 17, 831 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica ed AstronomiaUniversità degli Studi di CataniaCataniaItaly
  2. 2.STMicroelectronicsCataniaItaly

Personalised recommendations