Advertisement

Chebyshev Methods and Fast DCT Algorithms

  • Gerlind Plonka
  • Daniel Potts
  • Gabriele Steidl
  • Manfred Tasche
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

This chapter is concerned with Chebyshev methods and fast algorithms for the discrete cosine transform (DCT). Chebyshev methods are fundamental for the approximation and integration of real-valued functions defined on a compact interval. In Sect. 6.1, we introduce the Chebyshev polynomials of first kind and study their properties. Further, we consider the close connection between Chebyshev expansions and Fourier expansions of even 2π-periodic functions, the convergence of Chebyshev series, and the properties of Chebyshev coefficients. Section 6.2 addresses the efficient evaluation of polynomials, which are given in the orthogonal basis of Chebyshev polynomials. We present fast DCT algorithms in Sect. 6.3. These fast DCT algorithms are based either on the FFT or on the orthogonal factorization of the related cosine matrix.

References

  1. 16.
    G. Baszenski, M. Tasche, Fast polynomial multiplication and convolution related to the discrete cosine transform. Linear Algebra Appl. 252, 1–25 (1997)MathSciNetCrossRefGoogle Scholar
  2. 18.
    G. Baszenski, U. Schreiber, M. Tasche, Numerical stability of fast cosine transforms. Numer. Funct. Anal. Optim. 21(1–2), 25–46 (2000)MathSciNetCrossRefGoogle Scholar
  3. 27.
    S. Belmehdi, On the associated orthogonal polynomials. J. Comput. Appl. Math. 32(3), 311–319 (1990)MathSciNetCrossRefGoogle Scholar
  4. 31.
    J.-P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)MathSciNetCrossRefGoogle Scholar
  5. 65.
    T. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach Science Publishers, New York, 1978)zbMATHGoogle Scholar
  6. 70.
    C.W. Clenshaw, A note on the summation of Chebyshev series. Math. Tables Aids Comput. 9, 118–120 (1955)MathSciNetzbMATHGoogle Scholar
  7. 71.
    C. Clenshaw, A. Curtis, A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)MathSciNetCrossRefGoogle Scholar
  8. 83.
    A. Deaño, D. Huybrechs, A. Iserles, Computing Highly Oscillatory Integrals (SIAM, Philadelphia, 2018)zbMATHGoogle Scholar
  9. 88.
    J.R. Driscoll, D.M. Healy, Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2), 202–250 (1994)MathSciNetCrossRefGoogle Scholar
  10. 89.
    J.R. Driscoll, D.M. Healy, D.N. Rockmore, Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. SIAM J. Comput. 26(4), 1066–1099 (1997)MathSciNetCrossRefGoogle Scholar
  11. 107.
    E. Feig, Fast scaled-dct algorithm, in Proceedings of SPIE 1244, Image Processing Algorithms and Techniques, vol. 2 (1990), pp. 2–13Google Scholar
  12. 108.
    E. Feig, S. Winograd, Fast algorithms for the discrete cosine transform. IEEE Trans. Signal Process. 40(9), 2174–2193 (1992)CrossRefGoogle Scholar
  13. 127.
    W. Gautschi, Orthogonal Polynomials: Computation and Approximation (Oxford University Press, New York, 2004)zbMATHGoogle Scholar
  14. 155.
    N. Hale, A. Townsend, A fast, simple, and stable Chebyshev-Legendre transform using an asymptotic formula. SIAM J. Sci. Comput. 36(1), A148–A167 (2014)MathSciNetCrossRefGoogle Scholar
  15. 159.
    R. Haverkamp, Approximationsfehler der Ableitungen von Interpolationspolynomen. J. Approx. Theory 30(3), 180–196 (1980)MathSciNetCrossRefGoogle Scholar
  16. 160.
    R. Haverkamp, Zur Konvergenz der Ableitungen von Interpolationspolynomen. Computing 32(4), 343–355 (1984)MathSciNetCrossRefGoogle Scholar
  17. 161.
    D.M. Healy, P.J. Kostelec, S. Moore, D.N. Rockmore, FFTs for the 2-sphere - improvements and variations. J. Fourier Anal. Appl. 9(4), 341–385 (2003)MathSciNetCrossRefGoogle Scholar
  18. 173.
    A. Iserles, A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 117(3), 529–553 (2011)MathSciNetCrossRefGoogle Scholar
  19. 180.
    P. Junghanns, R. Kaiser, Collocation for Cauchy singular integral equations. Linear Algebra Appl. 439(3), 729–770 (2013)MathSciNetCrossRefGoogle Scholar
  20. 181.
    P. Junghanns, K. Rost, Matrix representations associated with collocation methods for Cauchy singular integral equations. Math. Methods Appl. Sci. 30, 1811–1821 (2007)MathSciNetCrossRefGoogle Scholar
  21. 182.
    P. Junghanns, R. Kaiser, D. Potts, Collocation–quadrature methods and fast summation for Cauchy singular integral equations with fixed singularities. Linear Algebra Appl. 491, 187–238 (2016)MathSciNetCrossRefGoogle Scholar
  22. 193.
    J. Keiner, Gegenbauer polynomials and semiseparable matrices. Electron. Trans. Numer. Anal. 30, 26–53 (2008)MathSciNetzbMATHGoogle Scholar
  23. 194.
    J. Keiner, Computing with expansions in Gegenbauer polynomials. SIAM J. Sci. Comput. 31(3), 2151–2171 (2009)MathSciNetCrossRefGoogle Scholar
  24. 195.
    J. Keiner, D. Potts, Fast evaluation of quadrature formulae on the sphere. Math. Comput. 77(261), 397–419 (2008)MathSciNetCrossRefGoogle Scholar
  25. 199.
    J. Keiner, S. Kunis, D. Potts, NFFT 3.4, C subroutine library. http://www.tu-chemnitz.de/~potts/nfft. Contributor: F. Bartel, M. Fenn, T. Görner, M. Kircheis, T. Knopp, M. Quellmalz, T. Volkmer, A. Vollrath
  26. 233.
    H. Majidian, On the decay rate of Chebyshev coefficients. Appl. Numer. Math. 113, 44–53 (2017)MathSciNetCrossRefGoogle Scholar
  27. 238.
    J.C. Mason, D.C. Handscomb, Chebyshev Polynomials (Chapman & Hall/CRC, Boca Raton, 2003)Google Scholar
  28. 262.
    S. Paszkowski, Open image in new window. Translated from Polish (Nauka, Moscow, 1983)Google Scholar
  29. 273.
    G. Plonka, M. Tasche, Fast and numerically stable algorithms for discrete cosine transforms. Linear Algebra Appl. 394, 309–345 (2005)MathSciNetCrossRefGoogle Scholar
  30. 293.
    D. Potts, G. Steidl, M. Tasche, Fast algorithms for discrete polynomial transforms. Math. Comput. 67(224), 1577–1590 (1998)MathSciNetCrossRefGoogle Scholar
  31. 300.
    M. Püschel, J.M.F. Moura, The algebraic approach to the discrete cosine and sine transforms and their fast algorithms. SIAM J. Comput. 32(5), 1280–1316 (2003)MathSciNetCrossRefGoogle Scholar
  32. 310.
    T.J. Rivlin, Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory, 2nd edn. (Wiley, New York, 1990)Google Scholar
  33. 313.
    C. Runge, Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Z. Math. Phys. 46, 224–243 (1901)zbMATHGoogle Scholar
  34. 317.
    H.E. Salzer, Lagrangian interpolation at the Chebyshev points X n,ν ≡cos(νπn), ν = 0(1)n; some unnoted advantages. Comput. J. 15, 156–159 (1972)Google Scholar
  35. 324.
    U. Schreiber, Numerische Stabilität von schnellen trigonometrischen Transformationen. Dissertation, Universität Rostock, 2000Google Scholar
  36. 337.
    G. Steidl, Fast radix-p discrete cosine transform. Appl. Algebra Eng. Commun. Comput. 3(1), 39–46 (1992)MathSciNetCrossRefGoogle Scholar
  37. 339.
    G. Steidl, M. Tasche, A polynomial approach to fast algorithms for discrete Fourier–cosine and Fourier–sine transforms. Math. Comput. 56(193), 281–296 (1991)MathSciNetCrossRefGoogle Scholar
  38. 347.
    F.J. Swetz, Mathematical Treasure: Collected Works of Chebyshev (MAA Press, Washington, 2016)Google Scholar
  39. 348.
    G. Szegö, Orthogonal Polynomials, 4th edn. (American Mathematical Society, Providence, 1975)zbMATHGoogle Scholar
  40. 350.
    M. Tasche, H. Zeuner, Roundoff error analysis for fast trigonometric transforms, in Handbook of Analytic-Computational Methods in Applied Mathematics (Chapman & Hall/CRC Press, Boca Raton, 2000), pp. 357–406zbMATHGoogle Scholar
  41. 354.
    A. Townsend, M. Webb, S. Olver, Fast polynomial transforms based on Toeplitz and Hankel matrices. Math. Comput. 87(312), 1913–1934 (2018)MathSciNetCrossRefGoogle Scholar
  42. 355.
    L.N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50(1), 67–87 (2008)MathSciNetCrossRefGoogle Scholar
  43. 356.
    L.N. Trefethen, Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013)zbMATHGoogle Scholar
  44. 367.
    Z.D. Wang, Fast algorithms for the discrete W transform and the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(4), 803–816 (1984)MathSciNetCrossRefGoogle Scholar
  45. 368.
    Z.D. Wang, On computing the discrete Fourier and cosine transforms. IEEE Trans. Acoust. Speech Signal Process. 33(5), 1341–1344 (1985)MathSciNetCrossRefGoogle Scholar
  46. 382.
    S. Xiang, X. Chen, H. Wang, Error bounds for approximation in Chebyshev points. Numer. Math. 116(3), 463–491 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gerlind Plonka
    • 1
  • Daniel Potts
    • 2
  • Gabriele Steidl
    • 3
  • Manfred Tasche
    • 4
  1. 1.University of GöttingenGöttingenGermany
  2. 2.Chemnitz University of TechnologyChemnitzGermany
  3. 3.TU KaiserslauternKaiserslauternGermany
  4. 4.University of RostockRostockGermany

Personalised recommendations