Numerical Fourier Analysis pp 159-230 | Cite as
Multidimensional Fourier Methods
Chapter
First Online:
Abstract
In this chapter, we consider d-dimensional Fourier methods for fixed \(d\in \mathbb N\). We start with Fourier series of d-variate, 2π-periodic functions \(f:\,\mathbb T^d \to \mathbb C\) in Sect. 4.1, where we follow the lines of Chap. 1. In particular, we present basic properties of the Fourier coefficients and learn about their decay for smooth functions.
References
- 10.K. Atkinson, W. Han, Theoretical Numerical Analysis. A Functional Analysis Framework (Springer, Dordrecht, 2009)Google Scholar
- 24.E. Bedrosian, A product theorem for Hilbert transforms. Proc. IEEE 51(5), 868–869 (1963)CrossRefGoogle Scholar
- 42.A. Bovik, Handbook of Image and Video Processing, 2nd edn. (Academic, Burlington, 2010)zbMATHGoogle Scholar
- 49.J.L. Brown, Analytic signals and product theorems for Hilbert transforms. IEEE Trans. Circuits Syst. 21, 790–792 (1974)MathSciNetCrossRefGoogle Scholar
- 51.T. Bülow, G. Sommer, Hypercomplex signals—a novel extension of the analytic signal to the multidimensional case. IEEE Trans. Signal Process. 49(11), 2844–2852 (2001)MathSciNetCrossRefGoogle Scholar
- 109.M. Felsberg, G. Sommer, The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)MathSciNetCrossRefGoogle Scholar
- 115.W. Förstner, E. Gülch, A fast operator for detection and precise location of distinct points, corners and centres of circular features, in Proceedings of ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data (1987), pp. 281–305Google Scholar
- 129.J.E. Gilbert, M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis (Cambridge University Press, Cambridge, 1991)CrossRefGoogle Scholar
- 146.L. Grafakos, Classical Fourier Analysis, 2nd edn. (Springer, New York, 2008)zbMATHGoogle Scholar
- 151.K. Gröchenig, An uncertainty principle related to the Poisson summation formula. Stud. Math. 121(1), 87–104 (1996)MathSciNetCrossRefGoogle Scholar
- 154.S.L. Hahn, Hilbert Transforms in Signal Processing (Artech House, Boston, 1996)zbMATHGoogle Scholar
- 158.S. Häuser, B. Heise, G. Steidl, Linearized Riesz transform and quasi-monogenic shearlets. Int. J. Wavelets Multiresolut. Inf. Process. 12(3), 1–25 (2014)MathSciNetCrossRefGoogle Scholar
- 200.F.W. King, Hilbert Transforms, Volume I (Cambridge University Press, Cambridge, 2008)Google Scholar
- 201.F.W. King, Hilbert Transforms, Volume II (Cambridge University Press, Cambridge, 2009)zbMATHGoogle Scholar
- 209.U. Köthe, M. Felsberg, Riesz-transforms versus derivatives: on the relationship between the boundary tensor and the energy tensor, in Scale Space and PDE Methods in Computer Vision: 5th International Conference, Scale-Space 2005, ed. by R. Kimmel, N.A. Sochen, J. Weickert (Springer, Berlin, 2005), pp. 179–191CrossRefGoogle Scholar
- 220.K.G. Larkin, D.J. Bone, M.A. Oldfield, Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. J. Opt. Soc. Am. A 18(8), 1862–1870 (2001)Google Scholar
- 221.R. Lasser, Introduction to Fourier Series (Marcel Dekker, New York, 1996)zbMATHGoogle Scholar
- 234.S. Mallat, A Wavelet Tour of Signal Processing. The Sparse Way, 3rd edn. (Elsevier/Academic, Amsterdam, 2009)Google Scholar
- 254.H.Q. Nguyen, M. Unser, J.P. Ward, Generalized Poisson summation formulas for continuous functions of polynomial growth. J. Fourier Anal. Appl. 23(2), 442–461 (2017)MathSciNetCrossRefGoogle Scholar
- 309.M. Riesz, Sur les fonctions conjuguées. Math. Z. 27(1), 218–244 (1928)MathSciNetCrossRefGoogle Scholar
- 325.L. Schwartz, Théorie des Distributions, (French), nouvelle edn. (Hermann, Paris, 1966)Google Scholar
- 329.V.L. Shapiro, Fourier Series in Several Variables with Applications to Partial Differential Equations (Chapman & Hall/CRC, Boca Raton, 2011)CrossRefGoogle Scholar
- 340.E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)zbMATHGoogle Scholar
- 341.E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, 1971)zbMATHGoogle Scholar
- 342.M. Storath, Directional multiscale amplitude and phase decomposition by the monogenic curvelet transform. SIAM J. Imag. Sci. 4(1), 57–78 (2011)MathSciNetCrossRefGoogle Scholar
- 357.H. Triebel, Höhere Analysis (Deutscher Verlag der Wissenschaften, Berlin, 1972)zbMATHGoogle Scholar
- 361.M. Unser, D. Van De Ville, Wavelet steerability and the higher-order Riesz transform. IEEE Trans. Image Process. 19(3), 636–652 (2010)MathSciNetCrossRefGoogle Scholar
- 373.H. Wendland, Scattered Data Approximation (Cambridge University Press, Cambridge, 2005)zbMATHGoogle Scholar
- 383.Y. Xu, D. Yan, The Bedrosian identity for the Hilbert transform of product functions. Proc. Am. Math. Soc. 134(9), 2719–2728 (2006)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2018