Advertisement

IGDT-Based Robust Operation of Integrated Electricity and Natural Gas Networks for Managing the Variability of Wind Power

  • Mohammad Amin Mirzaei
  • Ahmad Sadeghi-Yazdankhah
  • Morteza Nazari-HerisEmail author
  • Behnam Mohammadi-ivatloo
Chapter

Abstract

This chapter introduces an information-gap decision theory (IGDT)-based robust security-constrained unit commitment (SCUC) modeling of coordinated electricity and natural gas networks for managing uncertainty of wind power production. A comprehensive transmission system of natural gas, which delivers natural gas fuel to natural gas-fired plants, is considered. Mixed-integer nonlinear programming (MINLP) has been used for modeling the proposed method in GAMS software. A six-bus system with a six-node gas transmission network is considered to perform numerical tests and evaluate the performance of the introduced model. The obtained results of the study indicate that the natural gas network constraints and the uncertainty of wind energy production have effect on the daily operation cost of natural gas-fired plants and their participation in energy market.

Keywords

Information-gap decision theory Robust security-constrained unit commitment Natural gas network Wind energy 

References

  1. 1.
    Heydarian-Forushani, E., Golshan, M. E. H., Shafie-Khah, M., & Siano, P. (2018). Optimal operation of emerging flexible resources considering sub-hourly flexible ramp product. IEEE Transactions on Sustainable Energy, 9, 916–929.CrossRefGoogle Scholar
  2. 2.
    Wang, Q., Wu, H., Florita, A. R., Martinez-Anido, C. B., & Hodge, B.-M. (2016). The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales. Applied Energy, 184, 696–713.CrossRefGoogle Scholar
  3. 3.
    Wu, H., Shahidehpour, M., & Al-Abdulwahab, A. (2013). Hourly demand response in day-ahead scheduling for managing the variability of renewable energy. IET Generation, Transmission and Distribution, 7, 226–234.CrossRefGoogle Scholar
  4. 4.
    Mingfei, B., Jilai, Y., Shahidehpour, M., & Yiyun, Y. (2017). Integration of power-to-hydrogen in day-ahead security-constrained unit commitment with high wind penetration. Journal of Modern Power Systems and Clean Energy, 5, 337–349.CrossRefGoogle Scholar
  5. 5.
    Cui, H., Li, F., Hu, Q., Bai, L., & Fang, X. (2016). Day-ahead coordinated operation of utility-scale electricity and natural gas networks considering demand response based virtual power plants. Applied Energy, 176, 183–195.CrossRefGoogle Scholar
  6. 6.
    Henderson, M. (2017). Energy system flexibility: The importance of being Nimble [from the editor]. IEEE Power and Energy Magazine, 15, 4–6.Google Scholar
  7. 7.
    Klimstra J., & Hotakainen, M. (2011). Smart Power Generation. 4th ed. Helsinki, Finland: Avain Publishers.Google Scholar
  8. 8.
    U. Energy. (2014). Information Administration, Annual Energy Outlook.Google Scholar
  9. 9.
    EIA. (2011). Annual Energy Review [Online], Available: http://www.eia.doe.gov/emeu/aer/
  10. 10.
    Khaligh, V., Oloomi-Buygi, M., Anvari-Moghaddam, A., & Guerrero, J. M. (2018, June 12–15). A leader-follower approach to gas-electricity expansion planning problem. IEEE 18th international conference on Environment and Electrical Engineering and 2nd Industrial and Commercial Power Systems Europe (EEEIC 2018), Palermo, Italy.Google Scholar
  11. 11.
    Li, T., Eremia, M., & Shahidehpour, M. (2008). Interdependency of natural gas network and power system security. IEEE Transactions on Power Systems, 23, 1817–1824.CrossRefGoogle Scholar
  12. 12.
    Liu, C., Shahidehpour, M., Fu, Y., & Li, Z. (2009). Security-constrained unit commitment with natural gas transmission constraints. IEEE Transactions on Power Systems, 24, 1523–1536.CrossRefGoogle Scholar
  13. 13.
    Alabdulwahab, A., Abusorrah, A., Zhang, X., & Shahidehpour, M. (2015). Stochastic security-constrained scheduling of coordinated electricity and natural gas infrastructures. IEEE Systems Journal, 11, 1674–1683.CrossRefGoogle Scholar
  14. 14.
    Zhang, X., Shahidehpour, M., Alabdulwahab, A., & Abusorrah, A. (2016). Hourly electricity demand response in the stochastic day-ahead scheduling of coordinated electricity and natural gas networks. IEEE Transactions on Power Systems, 31, 592–601.CrossRefGoogle Scholar
  15. 15.
    Alabdulwahab, A., Abusorrah, A., Zhang, X., & Shahidehpour, M. (2015). Coordination of interdependent natural gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling. IEEE Transactions on Sustainable Energy, 6, 606–615.CrossRefGoogle Scholar
  16. 16.
    He, Y., Shahidehpour, M., Li, Z., Guo, C., & Zhu, B. (2017). Robust constrained operation of integrated electricity-natural gas system considering distributed natural gas storage. IEEE Transactions on Sustainable Energy, 9, 1061–1071.CrossRefGoogle Scholar
  17. 17.
    Chuan, H., Tianqi, L., Lei, W., & Shahidehpour, M. (2017). Robust coordination of interdependent electricity and natural gas systems in day-ahead scheduling for facilitating volatile renewable generations via power-to-gas technology. Journal of Modern Power Systems and Clean Energy, 5, 375–388.CrossRefGoogle Scholar
  18. 18.
    Soroudi, A., & Keane, A. (2015). Risk averse energy hub management considering plug-in electric vehicles using information gap decision theory. In Plug in electric vehicles in smart grids (pp. 107–127). Singapore: Springer.Google Scholar
  19. 19.
    Nazari-Heris, M., Mohammadi-Ivatloo, B., Gharehpetian, G. B., & Shahidehpour, M. (2018). Robust short-term scheduling of integrated heat and power microgrids. IEEE Systems Journal, 99, 1–9.Google Scholar
  20. 20.
    Nazari-Heris, M., & Mohammadi-Ivatloo, B. (2018). Application of robust optimization method to power system problems. In Classical and recent aspects of power system optimization (pp. 19–32).CrossRefGoogle Scholar
  21. 21.
    Marin, M., Milano, F., & Defour, D. (2017). Midpoint-radius interval-based method to deal with uncertainty in power flow analysis. Electric Power Systems Research, 147, 81–87.CrossRefGoogle Scholar
  22. 22.
    Panigrahi, B. K., Sahu, S. K., Nandi, R., & Nayak, S. (2017, April). Probabilistic load flow of a distributed generation connected power system by two point estimate method. International conference on Circuit, Power and Computing Technologies (ICCPCT) (pp. 1–5), IEEE.Google Scholar
  23. 23.
    Nazari-Heris, M., Abapour, S., & Mohammadi-Ivatloo, B. (2017). Optimal economic dispatch of FC-CHP based heat and power micro-grids. Applied Thermal Engineering, 114, 756–769.CrossRefGoogle Scholar
  24. 24.
    Zare, K., Moghaddam, M. P., & El Eslami, M. K. S. (2010). Demand bidding construction for a large consumer through a hybrid IGDT-probability methodology. Energy, 35, 2999–3007.CrossRefGoogle Scholar
  25. 25.
    Mohammadi-Ivatloo, B., Zareipour, H., Amjady, N., & Ehsan, M. (2013). Application of information-gap decision theory to risk-constrained self-scheduling of GenCos. IEEE Transactions on Power Systems, 28, 1093–1102.CrossRefGoogle Scholar
  26. 26.
    Moradi-Dalvand, M., Mohammadi-Ivatloo, B., Amjady, N., Zareipour, H., & Mazhab-Jafari, A. (2015). Self-scheduling of a wind producer based on information gap decision theory. Energy, 81, 588–600.CrossRefGoogle Scholar
  27. 27.
    Aghaei, J., Agelidis, V. G., Charwand, M., Raeisi, F., Ahmadi, A., Nezhad, A. E., et al. (2017). Optimal robust unit commitment of CHP plants in electricity markets using information gap decision theory. IEEE Transactions on Smart Grid, 8, 2296–2304.CrossRefGoogle Scholar
  28. 28.
    Nikoobakht, A., & Aghaei, J. (2016). IGDT-based robust optimal utilisation of wind power generation using coordinated flexibility resources. IET Renewable Power Generation, 11, 264–277.CrossRefGoogle Scholar
  29. 29.
    Ahmadi, A., Nezhad, A. E., & Hredzak, B. (2018). Security-constrained unit commitment in presence of Lithium-Ion battery storage units using information-gap decision theory. IEEE Transactions on Industrial Informatics.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Amin Mirzaei
    • 1
  • Ahmad Sadeghi-Yazdankhah
    • 2
  • Morteza Nazari-Heris
    • 1
    Email author
  • Behnam Mohammadi-ivatloo
    • 1
  1. 1.Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran
  2. 2.Department of Electrical EngineeringSahand University of TechnologyTabrizIran

Personalised recommendations