Advertisement

Robust Unit Commitment Applying Information Gap Decision Theory and Taguchi Orthogonal Array Technique

  • Hamid Reza Nikzad
  • Hamdi AbdiEmail author
  • Shahriar Abbasi
Chapter

Abstract

The purpose of this chapter is investigating the unit commitment problem (UCP) in the presence of renewable energy sources (RESs), energy storage systems (ESSs), and modeling the uncertainties arising in this regard. To achieve this goal, the following subjects are presented in detail. The classic UC formulations, the uncertainties’ impacts on this problem, and the new research efforts in this regard are addressed. Also, the existing optimization methods applied to solve the UCP such as robust optimization (RO), information gap decision theory (IGDT), and Taguchi orthogonal array technique (TOAT) as well as their advantages and drawbacks are described in the next section. Also, the application techniques for modeling the renewable energy sources and energy storage systems are detailed. Various models of UC problem such as thermal power plants and thermal power plants combined with RESs and ESSs considering the most important uncertainties in the inactive networks are presented. The proposed models have been tested on standard case of IEEE, 10 units, and the results are presented.

Keywords

Robust optimization Robust unit commitment (RUC) Uncertainty Wind power generation 

References

  1. 1.
    Shahbazitabar, M., & Abdi, H. (2017). A solution to the unit commitment problem applying a hierarchical combination algorithm. Journal of Energy Management and Technology, 1(2), 12–19.Google Scholar
  2. 2.
    Saravanan, B., et al. (2013). A solution to the unit commitment problem—A review. Frontiers in Energy, 7(2), 223–236.CrossRefGoogle Scholar
  3. 3.
    Tahanan, M., et al., (2014). Large-scale unit commitment under uncertainty: A literature survey. Pisa, IT: Università di Pisa.Google Scholar
  4. 4.
    Abdi, H., Moradi, A., & Saleh, S. (2015). Optimal unit commitment of renewable energy sources in the micro-grids with storage devices. Journal of Intelligent & Fuzzy Systems, 28(2), 537–546.Google Scholar
  5. 5.
    Zheng, Q. P., Wang, J., & Liu, A. L. (2015). Stochastic optimization for unit commitment—A review. IEEE Transactions on Power Systems, 30(4), 1913–1924.CrossRefGoogle Scholar
  6. 6.
    Shi, J., & Oren, S. S. (2018). Stochastic unit commitment with topology control recourse for power systems with large-scale renewable integration. IEEE Transactions on Power Systems, 33(3), 3315–3324.CrossRefGoogle Scholar
  7. 7.
    Blanco, I., & Morales, J. M. (2017). An efficient robust solution to the two-stage stochastic unit commitment problem. IEEE Transactions on Power Systems, 32(6), 4477–4488.CrossRefGoogle Scholar
  8. 8.
    Bakirtzis, E. A., et al. (2018). Storage management by rolling stochastic unit commitment for high renewable energy penetration. Electric Power Systems Research, 158, 240–249.CrossRefGoogle Scholar
  9. 9.
    Pozo, D., Contreras, J., & Sauma, E. E. (2014). Unit commitment with ideal and generic energy storage units. IEEE Transactions on Power Systems, 29(6), 2974–2984.CrossRefGoogle Scholar
  10. 10.
    Alizadeh, M. I., Moghaddam, M. P., & Amjady, N. (2018). Multistage multiresolution robust unit commitment with nondeterministic flexible ramp considering load and wind variabilities. IEEE Transactions on Sustainable Energy, 9(2), 872–883.CrossRefGoogle Scholar
  11. 11.
    Zhou, M., et al. (2018). Multi-objective unit commitment under hybrid uncertainties: A data-driven approach. In Networking, Sensing and Control (ICNSC), 2018 IEEE 15th International Conference on, IEEE.Google Scholar
  12. 12.
    Aghaei, J., et al. (2017). Optimal robust unit commitment of CHP plants in electricity markets using information gap decision theory. IEEE Transactions on Smart Grid, 8(5), 2296–2304.CrossRefGoogle Scholar
  13. 13.
    Jiang, R., Wang, J., & Guan, Y. (2012). Robust unit commitment with wind power and pumped storage hydro. IEEE Transactions on Power Systems, 27(2), 800.CrossRefGoogle Scholar
  14. 14.
    Zhao, C., et al. (2013). Multi-stage robust unit commitment considering wind and demand response uncertainties. IEEE Transactions on Power Systems, 28(3), 2708–2717.CrossRefGoogle Scholar
  15. 15.
    Abujarad, S. Y., Mustafa, M., & Jamian, J. (2017). Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review. Renewable and Sustainable Energy Reviews, 70, 215–223.CrossRefGoogle Scholar
  16. 16.
    Hosseini, S. H., Khodaei, A., & Aminifar, F. (2007). A novel straightforward unit commitment method for large-scale power systems. IEEE Transactions on Power Systems, 22(4), 2134–2143.CrossRefGoogle Scholar
  17. 17.
    Shahbazitabar, M., & Abdi, H. (2018). A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation. Energy.  https://doi.org/10.1016/j.energy.2018.07.025.CrossRefGoogle Scholar
  18. 18.
    Othman, M., et al. (2015). Solving unit commitment problem using multi-agent evolutionary programming incorporating priority list. Arabian Journal for Science and Engineering, 40(11), 3247–3261.CrossRefGoogle Scholar
  19. 19.
    Sen, S., & Kothari, D. P. (1998). Optimal thermal generating unit commitment: A review. Electrical Power & Energy Systems, 20(7), 443–451.CrossRefGoogle Scholar
  20. 20.
    Sheble, G. B., & Fahd, G. N. (1994). Unit commitment literature synopsis. IEEE Transactions on Power Systems, 9(1), 128–135.CrossRefGoogle Scholar
  21. 21.
    Saber, A., et al. (2007). Unit commitment computation by fuzzy adaptive particle swarm optimisation. IET Generation, Transmission & Distribution, 1(3), 456–465.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Chandrasekaran, K., et al. (2012). Thermal unit commitment using binary/real coded artificial bee colony algorithm. Electric Power Systems Research, 84(1), 109–119.CrossRefGoogle Scholar
  23. 23.
    Dieu, V. N., & Ongsakul, W. (2008). Ramp rate constrained unit commitment by improved priority list and augmented Lagrange Hopfield network. Electric Power Systems Research, 78(3), 291–301.CrossRefGoogle Scholar
  24. 24.
    Zhu, J. (2015). Optimization of power system operation (Vol. 47). New Jersey, USA: John Wiley & Sons, IEEE Press.Google Scholar
  25. 25.
    Soroudi, A., & Amraee, T. (2013). Decision making under uncertainty in energy systems: State of the art. Renewable and Sustainable Energy Reviews, 28, 376–384.CrossRefGoogle Scholar
  26. 26.
    Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95–99.CrossRefGoogle Scholar
  27. 27.
    Ben-Haim, Y. (2006). Info-gap decision theory: Decisions under severe uncertainty. Great Britain: Elsevier.CrossRefGoogle Scholar
  28. 28.
    Hong, Y.-Y., Lin, F.-J., & Yu, T.-H. (2016). Taguchi method-based probabilistic load flow studies considering uncertain renewables and loads. IET Renewable Power Generation, 10(2), 221–227.CrossRefGoogle Scholar
  29. 29.
    Kazarlis, S. A., Bakirtzis, A., & Petridis, V. (1996). A genetic algorithm solution to the unit commitment problem. IEEE Transactions on Power Systems, 11(1), 83–92.CrossRefGoogle Scholar
  30. 30.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hamid Reza Nikzad
    • 1
  • Hamdi Abdi
    • 1
    Email author
  • Shahriar Abbasi
    • 1
  1. 1.Electrical Engineering Department, Faculty of EngineeringRazi UniversityKermanshahIran

Personalised recommendations