Optimal Robust Microgrid Expansion Planning Considering Intermittent Power Generation and Contingency Uncertainties

  • Mehrdad Setayesh NazarEmail author
  • Alireza Heidari


This chapter presents an approach for robust microgrid expansion planning (RMEP) considering intermittent power generations (IPGs) and responsive loads (RLs). A framework for RMEP is presented based on stochastic-robust optimization for the optimal presence of active microgrid in the electricity market taking into account the IPGs/RLs and contingency uncertainties. The microgrid topology and power flow constraints are considered. The formulated problem is modelled as a mixed-integer nonlinear programming (MINLP) problem, and a heuristic optimization method is utilized. This model is applied to the 9-bus and 33-bus test systems, and the numerical results assess the effectiveness of the introduced method.


Expansion planning Robust optimization Stochastic optimization Microgrid 


  1. 1.
    Chowdhury, S., Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks (Renewable energy series). Stevenage: IET.CrossRefGoogle Scholar
  2. 2.
    Tsikalakis, A. G., & Hatziargyriou, N. D. (2008). Centralized control for optimizing microgrids operation. IEEE Transactions on Energy Conversion, 23(1), 241–248.CrossRefGoogle Scholar
  3. 3.
    Nwulu, N. I., & Xia, X. (2017). Optimal dispatch for a microgrid incorporating renewables and demand response. Renewable Energy, 101, 16–28.CrossRefGoogle Scholar
  4. 4.
    Gu, W., Wu, Z., Bo, R., Liu, W., Zhou, G., Chen, W., & Wu, Z. (2014). Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review. International Journal of Electrical Power & Energy Systems, 54, 26–37.CrossRefGoogle Scholar
  5. 5.
    Junga, J., & Villaranb, M. (2017). Optimal planning and design of hybrid renewable energy systems for microgrids. Renewable and Sustainable Energy Reviews, 75, 180–191.CrossRefGoogle Scholar
  6. 6.
    Quashie, M., Marnay, C., Bouffard, F., & Joós, G. (2018). Optimal planning of microgrid power and operating reserve capacity. Applied Energy, 210, 1229–1236.CrossRefGoogle Scholar
  7. 7.
    Mehdizadeh, A., & Taghizadegan, N. (2017). Robust optimisation approach for bidding strategy of intermittent generation-based microgrid under demand side management. IET Generation, Transmission and Distribution, 11, 1446–1455.Google Scholar
  8. 8.
    Shi, L., Luo, Y., & Tu, G. Y. (2014). Bidding strategy of microgrid with consideration of uncertainty for participating in power market. International Journal of Electrical Power & Energy Systems, 59, 1–13.CrossRefGoogle Scholar
  9. 9.
    Liu, G., Xu, Y., & Tomsovic, K. (2016). Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization. IEEE Transactions on Smart Grid, 7(1), 227–237.CrossRefGoogle Scholar
  10. 10.
    Nguyen, D. T., & Le, L. B. (2014). Optimal bidding strategy for microgrids considering intermittent energy and building thermal dynamics. IEEE Transactions on Smart Grid, 5(4), 1608–1620.CrossRefGoogle Scholar
  11. 11.
    Pandžić, H., Morales, J. M., Conejo, A. J., & Kuzle, I. (2013). Offering model for a virtual power plant based on stochastic programming. Applied Energy, 105, 282–292.CrossRefGoogle Scholar
  12. 12.
    Fleten, S. E., & Pettersen, E. (2005). Constructing bidding curves for a price-taking retailer in the norwegian electricity market. IEEE Transactions on Power Systems, 20(2), 701–708.CrossRefGoogle Scholar
  13. 13.
    Liu, G., Starke, M., Xiao, B., & Tomsovic, K. (2017). Robust optimisation-based microgrid scheduling with islanding constraints. IET Generation, Transmission, and Distribution, 11, 1820–1828.CrossRefGoogle Scholar
  14. 14.
    Herranz, R., Roque, A. M. S., Villar, J., & Campos, F. A. (2012). Optimal demand-side bidding strategies in electricity spot markets. IEEE Transactions on Power Systems, 27(3), 1204–1213.CrossRefGoogle Scholar
  15. 15.
    Wang, L., Li, Q., Ding, R., Sun, M., & Wang, G. (2017). Integrated scheduling of energy supply and demand in microgrids under uncertainty: A robust multi-objective optimization approach. Energy, 130, 1–14.CrossRefGoogle Scholar
  16. 16.
    Shaban Boloukat, M. H., & Foroud, A. A. (2016). Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming. Energy, 113, 776–787.CrossRefGoogle Scholar
  17. 17.
    Hemmati, R., Saboori, H., & Siano, P. (2017). Coordinated short-term scheduling and long-term expansion planning in microgrids incorporating renewable energy resources and energy storage systems. Energy, 134, 699–708.CrossRefGoogle Scholar
  18. 18.
    Nazar, M. S., Haghifam, M. R., & Nazar, M. (2012). A scenario driven multiobjective primary–secondary microgrid Expansion Planning algorithm in the presence of wholesale–retail market. International Journal of Electrical Power & Energy Systems, 40, 29–45.CrossRefGoogle Scholar
  19. 19.
    Shahnia, F., Arefi, A., & Ledwich, G. (2018). Electric distribution network planning. Singapore: Springer.CrossRefGoogle Scholar
  20. 20.
    Liu, G., & Tomsovic, K. (2014). A full demand response model in co-optimized energy and reserve market. Electric Power Systems Research, 111, 62–70.CrossRefGoogle Scholar
  21. 21.
    Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and network flows. Mathematical Programming B, 98, 49–71.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Derakhshandeh, S. Y., Masoum, A. S., Deilami, S., Masoum, M. A. S., & Golshan, M. E. H. (2013). Coordination of generation scheduling with PEVs charging in industrial microgrids. IEEE Transactions on Power Systems, 28(3), 3451–3461.CrossRefGoogle Scholar
  23. 23.
    El-Khattam, W., Bhattacharya, K., Hegazy, Y., & Salama, M. M. A. (2004). Optimal investment planning for distributed generation in a competitive electricity market. IEEE Transactions on Power Systems, 19(3), 1674–1684.CrossRefGoogle Scholar
  24. 24.
    El-Khattam, W., Hegazy, Y. G., & Salama, M. M. A. (2005). An integrated distributed generation optimization model for distributed system planning. IEEE Transactions on Power Systems, 20(2), 1158–1165.CrossRefGoogle Scholar
  25. 25.
    Falaghi, H., & Haghifam, M. R. (2007). ACO based algorithm for distributed generation sources allocation and sizing in distribution systems, power tech. IEEE power tech conference, 555–560.Google Scholar
  26. 26.
    Kia, M., Nazar, M. S., Sepasian, M. S., Heidari, A., & Siano, P. (2017). An efficient linear model for optimal day ahead scheduling of CHP units in active distribution networks considering load commitment programs. Energy, 139, 798–817.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringShahid Beheshti University, A.C.TehranIran
  2. 2.School of Electrical Engineering and TelecommunicationUniversity of New South WalesSydneyAustralia

Personalised recommendations