Advertisement

Palladium Nanofiber Networks Hydrogen Sensor and Hydrogen-Actuated Switches

  • Boyi Wang
  • Yong Zhu
  • Vien Huynh
  • Md. Ataur Rahman
  • Brian Hawkett
  • Sharath Sriram
  • Dzung Viet Dao
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 130)

Abstract

This paper presents a novel fabrication technique for hydrogen gas sensor based on polymer nanofiber and pure palladium metal. The polymer nanofiber was produced from 7 wt% poly vinyl alcohol (PVA) solution through electrospinning system. The multilayer PVA nanofibers was utilized as a substrate to create a networks of palladium nanofibers hydrogen sensor. The palladium nanofiber with a thickness of 30 nm was deposited on the surface of the multilayer PVA nanofibers by using E-beam evaporation system and shadow mask. During the hydrogen detection test, the novel hydrogen sensor was presented as a set of hydrogen-actuated switches with high sensitivity. The fabrication process was simple and inexpensive, and the sensor can be mass-produced.

Keywords

Nanofiber Poly vinyl alcohol Palladium Hydrogen sensor Switches 

References

  1. 1.
    Hübert, T., Boon-Brett, L., Black, G., Banach, U.: Hydrogen sensors – a review. Sens. Actuators B: Chem. 157, 329–352 (2011)CrossRefGoogle Scholar
  2. 2.
    Lim, S.H., Radha, B., Chan, J.Y., Saifullah, M.S.M., Kulkarni, G.U., Ho, G.W.: Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography. ACS Appl. Mater. Interfaces 5, 7274–7281 (2013)CrossRefGoogle Scholar
  3. 3.
    Zeng, X.Q., Wang, Y.L., Deng, H., Latimer, M.L., Xiao, Z.L., Pearson, J., Xu, T., Wang, H.H., Welp, U., Crabtree, G.W., Kwok, W.K.: Networks of ultrasmall Pd/Cr nanowires as high performance hydrogen sensors. ACS Nano 5(9), 7433–7452 (2011)CrossRefGoogle Scholar
  4. 4.
    Lee, J., Zhu, Y., Seshia, A.: Room temperature electrometry with SUB-10 electron charge resolution. J. Micromech. Microeng. 18(2), 025033 (2008)CrossRefGoogle Scholar
  5. 5.
    Zhu, Y., Lee, J., Seshia, A.: A resonant micromachined electrostatic charge sensor. IEEE Sens. J. 8(9), 1499–1505 (2008)CrossRefGoogle Scholar
  6. 6.
    Jalil, J., Zhu, Y., Ekanayake, C., Ruan, Y.: Sensing of single electrons using micro and nano technologies: a review. Nanotechnology 28(14), 142002 (2017)CrossRefGoogle Scholar
  7. 7.
    Lewis, F.A.: The palladium-hydrogen system. Platin. Met. Rev. 26(1), 20–27 (1982)Google Scholar
  8. 8.
    Lee, E., Lee, J.M., Koo, J.H., Lee, W., Lee, T.: Hysteresis behaviour of electrical resistance on Pd thin films during the process of absorption and desorption of hydrogen gas. Int. J. Hydrogen Energy 35, 6984–6991 (2011)CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Chen, Y.P., Song, H., Zhang, G.: Modelling analysis and experimental study on the optical fiber hydrogen sensor based on Pd–Y alloy thin film. Rev. Sci. Instrum. 83, 075001–075005 (2012)CrossRefGoogle Scholar
  10. 10.
    Wang, B., Zhu, Y., Chen, Y.P., Song, H., Huang, P.C., Dao, D.: Hydrogen sensor based on palladium-yttrium alloy nanosheet. Meterials Chem. Phys. 194, 231–235 (2017)CrossRefGoogle Scholar
  11. 11.
    Nguyen, T., Dinh, T., Phan, H., Tran, C., Foisal, A., Zhu, Y., Dao, D.: Electrically stable carbon nanotube yarn under tensile strain. IEEE Electron Device Lett. 38(9), 1331–1334 (2017)CrossRefGoogle Scholar
  12. 12.
    Phan, H., Dao, D., Wang, L., Dinh, T., Nguyen, N., Qamar, A., Tanner, P., Dimitrijev, S., Zhu, Y.: The effect of strain on the electrical conductance of p-type nanocrystalline silicon carbide thin films. J. Materials Chem. C 3(6), 1172–1176 (2015)CrossRefGoogle Scholar
  13. 13.
    Offermans, P., Tong, H.D., Van Rijn, C.J.M., Merken, P., Brongersma, S.H., Crego-Calama, M.: Ultralow-power hydrogen sensing with single palladium nanowires. Appl. Phys. Lett. 94, 223110 (2009)CrossRefGoogle Scholar
  14. 14.
    Lim, Y., Lee, Y., Heo, J., Shin, H.: Highly sensitive hydrogen gas sensor based on a suspended palladium/carbon nanowire fabricated via batch microfabrication processes. Sens. Actuators B: Chem. 210, 218–224 (2015)CrossRefGoogle Scholar
  15. 15.
    Zeng, X.Q., Latimer, M.L., Xiao, Z.L., Panuganti, S., Welp, S., Kwok, W.K., Xu, T.: Hydrogen gas sensing with networks of ultrasmall palladium nanowires formed on filtration membranes. NanoLetters 11, 262–268 (2011)CrossRefGoogle Scholar
  16. 16.
    Walter, E.C., Favier, F., Penner, R.M.: Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches. Anal. Chem. 74, 1546–1553 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boyi Wang
    • 1
  • Yong Zhu
    • 1
  • Vien Huynh
    • 2
  • Md. Ataur Rahman
    • 3
  • Brian Hawkett
    • 2
  • Sharath Sriram
    • 3
  • Dzung Viet Dao
    • 1
  1. 1.Queensland Mirco-and Nanotechnology Centre, Griffith UniversityNathanAustralia
  2. 2.Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney Nano InstituteThe University of SydneySydneyAustralia
  3. 3.Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneAustralia

Personalised recommendations