A Methodology for a Criminal Law and Procedure Ontology for Legal Question Answering

  • Biralatei Fawei
  • Jeff Z. PanEmail author
  • Martin Kollingbaum
  • Adam Z. Wyner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11341)


The Internet and the development of the semantic web have created the opportunity to provide structured legal data on the web. However, most legal information is in text. It is difficult to automatically determine the right natural language answer about the law to a given natural language question. One approach is to develop systems of legal ontologies and rules. Our example ontology represents semantic information about USA criminal law and procedure as well as the applicable legal rules. The purpose of the ontology is to provide reasoning support to an legal question answering tool that determines entailment between a pair of texts, one known as the Background information (Bg) and the other Question statement (Q), whether Bg entails Q based on the application of the law. The key contribution of this paper is a clear and well-structured methodology that serves to develop such criminal law ontologies and rules (CLOR).


Ontology Legal rules Bar examination 



This work was supported the EU Marie Currie K-Drive project (286348).


  1. 1.
    Segura-Olivares, A., Garcia, A., Calvo, H.: Feature analysis for paraphrase recognition and textual entailment. Res. Comput. Sci. 70, 119–144 (2013)Google Scholar
  2. 2.
    Magnini, B., et al.: The excitement open platform for textual inferences. In: ACL (System Demonstrations), pp. 43–48 (2014)Google Scholar
  3. 3.
    Fawei, B.J., Wyner, A.Z., Pan, J.Z.: Passing a USA National Bar Exam: a first corpus for experimentation. In: Tenth International Conference on Language Resources and Evaluation, LREC 2016, pp. 3373–3378 (2016)Google Scholar
  4. 4.
    Fawei, B., Wyner, A., Pan, J.Z., Kollingbaum, M.: Using legal ontologies with rules for legal textual entailment. In: Pagallo, U., Palmirani, M., Casanovas, P., Sartor, G., Villata, S. (eds.) AICOL 2015, AICOL 2016, AICOL 2016, AICOL 2017, AICOL 2017. LNCS, vol. 10791, pp. 317–324. Springer, Cham (2018). Scholar
  5. 5.
    National Conference of Bar Examiners: The MBE Multistate Bar Examination Sample MBE III. Accessed 05 Sept 2015
  6. 6.
    Emmanuel, S.L.: Strategies and Tactics for the MBE (Multistate Bar Exam), 2nd edn. Wolters Kluwer, Maryland (2011)Google Scholar
  7. 7.
    Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., van Deemter, K., Stevens, R.: Towards competency question-driven ontology authoring. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 752–767. Springer, Cham (2014). Scholar
  8. 8.
    Dennis, M., van Deemter, K., Dell’Aglio, D., Pan, J.Z.: Computing authoring tests from competency questions: experimental validation. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 243–259. Springer, Cham (2017). Scholar
  9. 9.
    Hoekstra, R., Breuker, J., Di Bello, M., Boer, A.: The LKIF core ontology of basic legal concepts. LOAIT 321, 43–63 (2007)Google Scholar
  10. 10.
    Herring, J.: Criminal Law: Text, Cases, and Materials. Oxford University Press USA, New York (2014)CrossRefGoogle Scholar
  11. 11.
    Martin, J., Storey, T.: Unlocking criminal law, 4th edn. Routledge, New York (2013)Google Scholar
  12. 12.
    Breuker, J.: The construction and use of ontologies of criminal law in the eCourt European project. In: Proceedings of Means of Electronic Communication in Court Administration, pp. 15–40 (2003)Google Scholar
  13. 13.
    Bak, J., Cybulka, J., Jedrzejek, C.: Ontological modeling of a class of linked economic crimes. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence IX. LNCS, vol. 7770, pp. 98–123. Springer, Heidelberg (2013). Scholar
  14. 14.
    Osathitporn, P., Soonthornphisaj, N., Vatanawood, W.: A scheme of criminal law knowledge acquisition using ontology. In: 2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 29–34. IEEE (2017)Google Scholar
  15. 15.
    Breuker, J., Elhag, A., Petkov, E., Winkels, R.: Ontologies for legal information serving and knowledge management. In: Legal Knowledge and Information Systems, Jurix 2002: The Fifteenth Annual Conference, pp. 1–10 (2002)Google Scholar
  16. 16.
    New York State Board of Law Examiners: Course Materials for the New York Law Course and New York Law Examination. Accessed 15 July 2018
  17. 17.
    Davis, E., Marcus, G.: Commonsense reasoning and commonsense knowledge in artificial intelligence. Commun. ACM 58(9), 92–103 (2015)CrossRefGoogle Scholar
  18. 18.
    Liu, H., Singh, P.: ConceptNet - a practical commonsense reasoning tool-kit. BT Technol. J. 22(4), 211–226 (2004)CrossRefGoogle Scholar
  19. 19.
    Ceci, M., Gangemi, A.: An OWL ontology library representing judicial interpretations. Semant. Web 7(3), 229–253 (2016)CrossRefGoogle Scholar
  20. 20.
    Gangemi, A.: Introducing pattern-based design for legal ontologies. In: Law, Ontologies and the Semantic Web, pp. 53–71 (2009)Google Scholar
  21. 21.
    Gangemi, A., Sagri, M.-T., Tiscornia, D.: A constructive framework for legal ontologies. In: Benjamins, V.R., Casanovas, P., Breuker, J., Gangemi, A. (eds.) Law and the Semantic Web. LNCS (LNAI), vol. 3369, pp. 97–124. Springer, Heidelberg (2005). Scholar
  22. 22.
    Maxwell, K.T., Schafer, B.: Concept and context in legal information retrieval. JURIX, pp. 63–72 (2008)Google Scholar
  23. 23.
    Pan, J.Z., Vetere, G., Gomez-Perez, J.M., Wu, H.: Exploiting Linked Data and Knowledge Graphs for Large Organisations. Springer, Cham (2016). ISBN 978-3-319-45652-2CrossRefGoogle Scholar
  24. 24.
    Pan, J.Z., et al.: Reasoning Web: Logical Foundation of Knowledge Graph Construction and Querying Answering. Springer, Cham (2017). Scholar
  25. 25.
    Bezerra, C., Freitas, F., Santana, F.: Evaluating ontologies with competency questions. In: WI-IAT, pp. 284–285 (2013)Google Scholar
  26. 26.
    Pan, J.Z.: Resource description framework. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 71–90. Springer, Heidelberg (2009). Scholar
  27. 27.
    Clarkson, K.W., Miller, R.L., Cross, F.B.: Business Law: Text and Cases: Legal, Ethical, Global, and Corporate Environment. Cengage Learning, Mason (2010)Google Scholar
  28. 28.
    Gangemi, A.: Design patterns for legal ontology constructions. LOAIT 2007, 65–85 (2007)Google Scholar
  29. 29.
    Golbreich, C., Horrocks, I.: The OBO to OWL mapping, GO to OWL 1.1. In: Proceedings of the OWLED 2007 Workshop on OWL: Experiences and Directions. Citeseer (2007)Google Scholar
  30. 30.
    Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: OASIS legalRuleML. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law, pp. 3–12. ACM (2013)Google Scholar
  31. 31.
    Gandon, F., Governatori, G., Villata, S.: Normative requirements as linked data. In: The 30th International Conference on Legal Knowledge and Information Systems. JURIX (2017)Google Scholar
  32. 32.
    Moens, M.F., Spyns, P.: Norm modifications in defeasible logic. In: Legal Knowledge and Information Systems: JURIX 2005: The Eighteenth Annual Conference, vol. 134, no. 13. IOS Press (2005)Google Scholar
  33. 33.
    Navarro, P.E., Rodríguez, J.L.: Deontic Logic and Legal Systems. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  34. 34.
    Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: OOPS! (ontology pitfall scanner!): an on-line tool for ontology evaluation. IJSWIS 10(2), 7–34 (2014)Google Scholar
  35. 35.
    Poveda-Villalón, M., Suárez-Figueroa, M.C.: OOPS!-ontology pitfalls scanner! Ontology Engineering Group, Universidad Politécnica de Madrid (2012)Google Scholar
  36. 36.
    Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The NeOn methodology for ontology engineering. In: Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a Networked World, pp. 9–34. Springer, Heidelberg (2012). Scholar
  37. 37.
    De Nicola, A., Missikoff, M.: A lightweight methodology for rapid ontology engineering. Commun. ACM 59(3), 79–86 (2016)CrossRefGoogle Scholar
  38. 38.
    Pan, J.Z., Pavlova, S., Li, C., Li, N., Li, Y., Liu, J.: Content based fake news detection using knowledge graphs. In: Vrandečić, D., et al. (eds.) ISWC 2018, vol. 11136. Springer, Cham (2018). Scholar
  39. 39.
    Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001)CrossRefGoogle Scholar
  40. 40.
    Zhu, M., Gao, Z., Pan, J.Z., Zhao, Y., Xu, Y., Quan, Z.: TBox Learning from Incomplete Data by Inference in BelNet+. Knowl. Based Syst. 75, 30–40 (2015)CrossRefGoogle Scholar
  41. 41.
    Stoilos, G., Stamou, G., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with very expressive fuzzy description logics. JAIR 30, 273–320 (2007)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Pan, J.Z., Stoilos, G., Stamou, G., Tzouvaras, V., Horrocks, I.: f-SWRL: a fuzzy extension of SWRL. In: Spaccapietra, S., Aberer, K., Cudré-Mauroux, P. (eds.) Journal on Data Semantics VI. LNCS, vol. 4090, pp. 28–46. Springer, Heidelberg (2006). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Biralatei Fawei
    • 1
  • Jeff Z. Pan
    • 1
    Email author
  • Martin Kollingbaum
    • 1
  • Adam Z. Wyner
    • 2
  1. 1.Department of Computing ScienceUniversity of AberdeenAberdeenUK
  2. 2.Department of Computer Science, School of LawSwansea UniversitySwanseaUK

Personalised recommendations