Advertisement

Cholesterol-Dependent Gating Effects on Ion Channels

  • Qiu-Xing JiangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1115)

Abstract

Biomembranes separate a live cell from its environment and keep it in an off-equilibrium, steady state. They contain both phospholipids and nonphospholipids, depending on whether there are phosphate groups in the headgroup regions. Cholesterol (CHOL) is one type of nonphospholipids, and one of the most abundant lipid molecules in humans. Its content in plasma membranes and intracellular membranes varies and is tightly regulated. Voltage-gated ion channels are universally present in every cell and are fairly diversified in the eukaryotic domain of life. Our lipid-dependent gating hypothesis postulates that the controlled switch of the voltage-sensor domains (VSDs) in a voltage-gated potassium (Kv) channel between the “down” and the “up” state (gating) is sensitive to the ratio of phospholipids:nonphospholipids in the annular layer around the channel. High CHOL content is found to exert strong inhibitory effects on Kv channels. Such effects have been observed in in vitro membranes, cultured cells, and animal models for cholesterol metabolic defects. Thermodynamic analysis of the CHOL-dependent gating suggests that the inhibitory effects of CHOL result from collective interactions between annular CHOL molecules and the channel, which appear to be a more generic principle behind the CHOL effects on other ion channels and transporters. We will review the recent progress in the CHOL-dependent gating of voltage-gated ion channels, discuss the current technical limitations, and then expand briefly the learned principles to other ion channels that are known to be sensitive to the CHOL–channel interactions.

Keywords

Annular lipids Cholesterol packing bSUMs Cholesterol organization Inhibitory effects Voltage-sensor conformation 

Notes

Acknowledgments

Over the years, the main body of research in my laboratory on lipid-dependent gating has been funded by NIH (R01GM111367, R01GM093271 & R01GM088745), AHA (12IRG9400019), CF Foundation (JIANG15G0), Welch Foundation (I-1684), and CPRIT (RP120474). I am indebted to many colleagues in the ion channel field and in lipid research for their valuable suggestions and advice. I have tried my best to cover most, if not all, published work closely related to CHOL-dependent gating effects on ion channels, and would apologize to those whose work is not cited here.

References

  1. 1.
    Powl AM, East JM, Lee AG. Anionic phospholipids affect the rate and extent of flux through the mechanosensitive channel of large conductance MscL. Biochemistry. 2008;47(14):4317–28.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Powl AM, East JM, Lee AG. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Biochemistry. 2003;42(48):14306–17.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Zaydman MA, et al. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc Natl Acad Sci U S A. 2013;110(32):13180–5.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Whorton MR, MacKinnon R. X-ray structure of the mammalian GIRK2-betagamma G-protein complex. Nature. 2013;498(7453):190–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Rittenhouse AR. PIP2 PIP2 hooray for maxi K+. J Gen Physiol. 2008;132(1):5–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lee J, et al. PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J Gen Physiol. 2005;126(5):439–51.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Xiao J, Zhen XG, Yang J. Localization of PIP2 activation gate in inward rectifier K+ channels. Nat Neurosci. 2003;6(8):811–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Zaydman MA, Cui J. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front Physiol. 2014;5:195.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Furst O, D’Avanzo N. Isoform dependent regulation of human HCN channels by cholesterol. Sci Rep. 2015;5:14270.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Valiyaveetil FI, Zhou Y, MacKinnon R. Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry. 2002;41(35):10771–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Valiyaveetil FI, et al. Glycine as a D-amino acid surrogate in the K(+)-selectivity filter. Proc Natl Acad Sci U S A. 2004;101(49):17045–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Long SB, et al. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature. 2007;450(7168):376–82.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Dowhan W, Bogdanov M. Lipid-dependent membrane protein topogenesis. Annu Rev Biochem. 2009;78:515–40.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Zhang M, Mileykovskaya E, Dowhan W. Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem. 2005;280(33):29403–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mileykovskaya E, Zhang M, Dowhan W. Cardiolipin in energy transducing membranes. Biochemistry (Mosc). 2005;70(2):154–8.CrossRefGoogle Scholar
  16. 16.
    Alberts B, et al. Molecular biology of the cell. 5th ed. New York: Garland Science; 2007.CrossRefGoogle Scholar
  17. 17.
    Palfreyman M, Jorgensen EM. PKC defends crown against Munc13. Neuron. 2007;54(2):179–80.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    de Jong AP, et al. Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity. Proc Natl Acad Sci U S A. 2016;113(18):5095–100.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kalwa H, et al. Phospholipase C epsilon (PLCepsilon) induced TRPC6 activation: a common but redundant mechanism in primary podocytes. J Cell Physiol. 2015;230(6):1389–99.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhang X, Trebak M. Transient receptor potential canonical 7: a diacylglycerol-activated non-selective cation channel. Handb Exp Pharmacol. 2014;222:189–204.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Itsuki K, et al. PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. J Gen Physiol. 2014;143(2):183–201.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Venkatachalam K, Zheng F, Gill DL. Control of TRPC and store-operated channels by protein kinase C. Novartis Found Symp. 2004;258:172–85; discussion 185-8, 263-6.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Schmitt S, Castelvetri LC, Simons M. Metabolism and functions of lipids in myelin. Biochim Biophys Acta. 2015;1851(8):999–1005.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Smaby JM, et al. Cholesterol-induced interfacial area condensations of galactosylceramides and sphingomyelins with identical acyl chains. Biochemistry. 1996;35(18):5696–704.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Di Biase A, Salvati S, Serlupi Crescenzi G. Lipid profile of rat myelin subfractions. Neurochem Res. 1990;15(5):519–22.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hill WG, et al. Isolation and characterization of the Xenopus oocyte plasma membrane: a new method for studying activity of water and solute transporters. Am J Physiol Renal Physiol. 2005;289(1):F217–24.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sadler SE. Low-density caveolae-like membrane from Xenopus laevis oocytes is enriched in Ras. J Cell Biochem. 2001;83(1):21–32.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Orth M, Bellosta S. Cholesterol: its regulation and role in central nervous system disorders. Cholesterol. 2012;2012:292598.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Levitan I, Singh DK, Rosenhouse-Dantsker A. Cholesterol binding to ion channels. Front Physiol. 2014;5:65.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Li Q, et al. Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat Struct Mol Biol. 2014;21(3):244–52.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Long SB, Campbell EB, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 2005;309(5736):897–903.PubMedCrossRefGoogle Scholar
  32. 32.
    Hille B. Ion channels of excitable membranes. 3rd ed. Sunderland: Sinauer Associates; 2001.Google Scholar
  33. 33.
    Shribman S, et al. Voltage-gated potassium channelopathy: an expanding spectrum of clinical phenotypes. BMJ Case Rep. 2013;2013:bcr2012007742.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Poolos NP, Johnston D. Dendritic ion channelopathy in acquired epilepsy. Epilepsia. 2012;53(Suppl 9):32–40.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Baig SM, et al. Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci. 2011;14(1):77–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Xie G, et al. A new Kv1.2 channelopathy underlying cerebellar ataxia. J Biol Chem. 2010;285(42):32160–73.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Tremblay J, Hamet P. Genetics of pain, opioids, and opioid responsiveness. Metabolism. 2010;59(Suppl 1):S5–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Pietrobon D. CaV2.1 channelopathies. Pflugers Arch. 2010;460(2):375–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Rajakulendran S, et al. Episodic ataxia type 1: a neuronal potassium channelopathy. Neurotherapeutics. 2007;4(2):258–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Kordasiewicz HB, Gomez CM. Molecular pathogenesis of spinocerebellar ataxia type 6. Neurotherapeutics. 2007;4(2):285–94.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Howard RJ, et al. Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron. 2007;53(5):663–75.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Estevez M. Invertebrate modeling of a migraine channelopathy. Headache. 2006;46(Suppl 1):S25–31.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Cox JJ, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444(7121):894–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bjerregaard P, Jahangir A, Gussak I. Targeted therapy for short QT syndrome. Expert Opin Ther Targets. 2006;10(3):393–400.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Poolos NP. The h-channel: a potential channelopathy in epilepsy? Epilepsy Behav. 2005;7(1):51–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Tao X, et al. A gating charge transfer center in voltage sensors. Science. 2010;328:67–73.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kintzer AF, Stroud RM. Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature. 2016;531(7593):258–62.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Guo J, et al. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature. 2016;531(7593):196–201.PubMedCrossRefGoogle Scholar
  49. 49.
    Payandeh J, et al. The crystal structure of a voltage-gated sodium channel. Nature. 2011;475(7356):353–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wang W, MacKinnon R. Cryo-EM structure of the open human ether-a-go-go-related K(+) channel hERG. Cell. 2017;169(3):422–430.e10.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lee CH, MacKinnon R. Structures of the human HCN1 hyperpolarization-activated channel. Cell. 2017;168(1-2):111–120.e11.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hite RK, MacKinnon R. Structural titration of Slo2.2, a Na+−dependent K+ channel. Cell. 2017;168(3):390–399.e11.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Whicher JR, MacKinnon R. Structure of the voltage-gated K(+) channel Eag1 reveals an alternative voltage sensing mechanism. Science. 2016;353(6300):664–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wu J, et al. Structure of the voltage-gated calcium channel Cav1.1 complex. Science. 2015;350(6267):aad2395.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Sun J, MacKinnon R. Cryo-EM structure of a KCNQ1/CaM complex reveals insights into congenital long QT syndrome. Cell. 2017;169(6):1042–1050.e9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Vargas E, et al. An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. J Gen Physiol. 2012;140(6):587–94.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Villalba-Galea CA, et al. Charge movement of a voltage-sensitive fluorescent protein. Biophys J. 2009;96(2):L19–21.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Vargas E, Bezanilla F, Roux B. In search of a consensus model of the resting state of a voltage-sensing domain. Neuron. 2011;72(5):713–20.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Villalba-Galea CA, et al. S4-based voltage sensors have three major conformations. Proc Natl Acad Sci U S A. 2008;105(46):17600–7.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chanda B, Bezanilla F. A common pathway for charge transport through voltage-sensing domains. Neuron. 2008;57(3):345–51.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Bezanilla F. The voltage-sensor structure in a voltage-gated channel. Trends Biochem Sci. 2005;30(4):166–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Sigg D, Bezanilla F. A physical model of potassium channel activation: from energy landscape to gating kinetics. Biophys J. 2003;84(6):3703–16.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Bezanilla F, Perozo E. The voltage sensor and the gate in ion channels. Adv Protein Chem. 2003;63:211–41.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Bezanilla F. Voltage sensor movements. J Gen Physiol. 2002;120(4):465–73.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Bezanilla F. The voltage sensor in voltage-dependent ion channels. Physiol Rev. 2000;80(2):555–92.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Papazian DM, Bezanilla F. Voltage-dependent activation of ion channels. Adv Neurol. 1999;79:481–91.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Cha A, Bezanilla F. Structural implications of fluorescence quenching in the Shaker K+ channel. J Gen Physiol. 1998;112(4):391–408.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Sigg D, Bezanilla F. Total charge movement per channel. The relation between gating charge displacement and the voltage sensitivity of activation. J Gen Physiol. 1997;109(1):27–39.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Cha A, Bezanilla F. Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron. 1997;19(5):1127–40.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Bezanilla F, Stefani E. Voltage-dependent gating of ionic channels. Annu Rev Biophys Biomol Struct. 1994;23:819–46.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Shenkel S, Bezanilla F. Patch recordings from the electrocytes of electrophorus. Na channel gating currents. J Gen Physiol. 1991;98(3):465–78.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Lee SY, et al. Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc Natl Acad Sci U S A. 2005;102(43):15441–6.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Jiang QX, Wang DN, MacKinnon R. Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation. Nature. 2004;430(7001):806–10.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Jiang Y, et al. The principle of gating charge movement in a voltage-dependent K+ channel. Nature. 2003;423(6935):42–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Jiang Y, et al. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423(6935):33–41.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ahern CA, et al. Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels. Circ Res. 2008;102(1):86–94.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Horn R. How ion channels sense membrane potential. Proc Natl Acad Sci U S A. 2005;102(14):4929–30.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ahern CA, Horn R. Focused electric field across the voltage sensor of potassium channels. Neuron. 2005;48(1):25–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ahern CA, Horn R. Specificity of charge-carrying residues in the voltage sensor of potassium channels. J Gen Physiol. 2004;123(3):205–16.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Horn R. Coupled movements in voltage-gated ion channels. J Gen Physiol. 2002;120(4):449–53.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Horn R. A new twist in the saga of charge movement in voltage-dependent ion channels. Neuron. 2000;25(3):511–4.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Horn R. Conversation between voltage sensors and gates of ion channels. Biochemistry. 2000;39(51):15653–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Yang N, Horn R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron. 1995;15(1):213–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Li Q, et al. Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain. Nat Struct Mol Biol. 2014;21(2):160–6.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Tang L, et al. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature. 2014;505(7481):56–61.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Catterall WA. Structure and function of voltage-gated sodium channels at atomic resolution. Exp Physiol. 2014;99(1):35–51.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Payandeh J, et al. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature. 2012;486(7401):135–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3(8):a003947.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Catterall WA. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron. 2010;67(6):915–28.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Yarov-Yarovoy V, Baker D, Catterall WA. Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels. Proc Natl Acad Sci U S A. 2006;103(19):7292–7.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sokolov S, Scheuer T, Catterall WA. Ion permeation through a voltage- sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron. 2005;47(2):183–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Yu FH, Catterall WA. Overview of the voltage-gated sodium channel family. Genome Biol. 2003;4(3):24.CrossRefGoogle Scholar
  93. 93.
    Catterall WA. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 1995;64:493–531.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Catterall WA. Molecular properties of voltage-sensitive sodium and calcium channels. Braz J Med Biol Res. 1988;21(6):1129–44.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Tombola F, Ulbrich MH, Isacoff EY. Architecture and gating of Hv1 proton channels. J Physiol. 2009;587(Pt 22):5325–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Pathak MM, et al. Closing in on the resting state of the Shaker K(+) channel. Neuron. 2007;56(1):124–40.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Tombola F, Pathak MM, Isacoff EY. How does voltage open an ion channel? Annu Rev Cell Dev Biol. 2006;22:23–52.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Tombola F, Pathak MM, Isacoff EY. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron. 2005;45(3):379–88.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Gandhi CS, Isacoff EY. Molecular models of voltage sensing. J Gen Physiol. 2002;120(4):455–63.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Mannuzzu LM, Isacoff EY. Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J Gen Physiol. 2000;115(3):257–68.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Mannuzzu LM, Moronne MM, Isacoff EY. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science. 1996;271(5246):213–6.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Larsson HP, et al. Transmembrane movement of the shaker K+ channel S4. Neuron. 1996;16(2):387–97.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Heginbotham L, et al. Mutations in the K+ channel signature sequence. Biophys J. 1994;66(4):1061–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Heginbotham L, MacKinnon R. Conduction properties of the cloned Shaker K+ channel. Biophys J. 1993;65(5):2089–96.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Aggarwal SK, MacKinnon R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron. 1996;16(6):1169–77.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Starace DM, Bezanilla F. Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker k+ channel. J Gen Physiol. 2001;117(5):469–90.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Seoh SA, et al. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron. 1996;16(6):1159–67.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Islas LD, Sigworth FJ. Electrostatics and the gating pore of Shaker potassium channels. J Gen Physiol. 2001;117(1):69–89.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Islas LD, Sigworth FJ. Voltage sensitivity and gating charge in Shaker and Shab family potassium channels. J Gen Physiol. 1999;114(5):723–42.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Schoppa NE, Sigworth FJ. Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels. J Gen Physiol. 1998;111(2):313–42.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Schoppa NE, et al. The size of gating charge in wild-type and mutant Shaker potassium channels. Science. 1992;255(5052):1712–5.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Zhou Y, MacKinnon R. Ion binding affinity in the cavity of the KcsA potassium channel. Biochemistry. 2004;43(17):4978–82.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zhou Y, MacKinnon R. The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J Mol Biol. 2003;333(5):965–75.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Zhang X, et al. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature. 2012;486(7401):130–4.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Takeshita K, et al. X-ray crystal structure of voltage-gated proton channel. Nat Struct Mol Biol. 2014;21(4):352–7.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Clayton GM, et al. Combining electron crystallography and X-ray crystallography to study the MlotiK1 cyclic nucleotide-regulated potassium channel. J Struct Biol. 2009;167(3):220–6.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Tao X, Hite RK, MacKinnon R. Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature. 2017;541(7635):46–51.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Hite RK, Tao X, MacKinnon R. Structural basis for gating the high-conductance Ca2+-activated K+ channel. Nature. 2017;541(7635):52–7.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Fox PD, Loftus RJ, Tamkun MM. Regulation of Kv2.1 K(+) conductance by cell surface channel density. J Neurosci. 2013;33(3):1259–70.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    O’Connell KM, Loftus R, Tamkun MM. Localization-dependent activity of the Kv2.1 delayed-rectifier K+ channel. Proc Natl Acad Sci U S A. 2010;107(27):12351–6.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    O’Connell KM, Tamkun MM. Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. J Cell Sci. 2005;118(Pt 10):2155–66.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Martens JR, et al. Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem. 2001;276(11):8409–14.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Purcell EK, et al. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells. PLoS One. 2011;6(10):e26289.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Huang CW, Wu YJ, Wu SN. Modification of activation kinetics of delayed rectifier K+ currents and neuronal excitability by methyl-beta-cyclodextrin. Neuroscience. 2011;176:431–41.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Finol-Urdaneta RK, et al. Modulation of KvAP unitary conductance and gating by 1-alkanols and other surface active agents. Biophys J. 2010;98(5):762–72.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Guo J, et al. Effects of cholesterol levels on the excitability of rat hippocampal neurons. Mol Membr Biol. 2008;25(3):216–23.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Pottosin II, et al. Methyl-beta-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytes. Pflugers Arch. 2007;454(2):235–44.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Balijepalli RC, et al. Kv11.1 (ERG1) K+ channels localize in cholesterol and sphingolipid enriched membranes and are modulated by membrane cholesterol. Channels (Austin). 2007;1(4):263–72.CrossRefGoogle Scholar
  129. 129.
    Abi-Char J, et al. Membrane cholesterol modulates Kv1.5 potassium channel distribution and function in rat cardiomyocytes. J Physiol. 2007;582(Pt 3):1205–17.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Xia F, et al. Disruption of pancreatic beta-cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis. J Biol Chem. 2004;279(23):24685–91.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Pouvreau S, et al. Membrane cholesterol modulates dihydropyridine receptor function in mice fetal skeletal muscle cells. J Physiol. 2004;555(Pt 2):365–81.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Hajdu P, et al. Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. Pflugers Arch. 2003;445(6):674–82.PubMedCrossRefGoogle Scholar
  133. 133.
    Rudakova E, et al. Localization of Kv4.2 and KChIP2 in lipid rafts and modulation of outward K+ currents by membrane cholesterol content in rat left ventricular myocytes. Pflugers Arch. 2015;467(2):299–309.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Bowles DK, et al. Hypercholesterolemia inhibits L-type calcium current in coronary macro-, not microcirculation. J Appl Physiol (1985). 2004;96(6):2240–8.CrossRefGoogle Scholar
  135. 135.
    Heaps CL, Tharp DL, Bowles DK. Hypercholesterolemia abolishes voltage-dependent K+ channel contribution to adenosine-mediated relaxation in porcine coronary arterioles. Am J Physiol Heart Circ Physiol. 2005;288(2):H568–76.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Balajthy A, et al. 7DHC-induced changes of Kv1.3 operation contributes to modified T cell function in Smith-Lemli-Opitz syndrome. Pflugers Arch. 2016;468:1403.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Chun YS, et al. Cholesterol modulates ion channels via down-regulation of phosphatidylinositol 4,5-bisphosphate. J Neurochem. 2010;112(5):1286–94.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Coyan FC, et al. A long QT mutation substitutes cholesterol for phosphatidylinositol-4,5-bisphosphate in KCNQ1 channel regulation. PLoS One. 2014;9(3):e93255.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Heaps CL, et al. Effects of exercise training and hypercholesterolemia on adenosine activation of voltage-dependent K+ channels in coronary arterioles. J Appl Physiol. 2008;105(6):1761–71.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Balijepalli SY, et al. Mechanism of loss of Kv11.1 K+ current in mutant T421M-Kv11.1-expressing rat ventricular myocytes: interaction of trafficking and gating. Circulation. 2012;126(24):2809–18.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Xu Y, Ramu Y, Lu Z. Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature. 2008;451(7180):826–9.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Ramu Y, Xu Y, Lu Z. Enzymatic activation of voltage-gated potassium channels. Nature. 2006;442(7103):696–9.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Zheng H, et al. Lipid-dependent gating of a voltage-gated potassium channel. Nat Commun. 2011;2:250.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Jiang Q-X, Gonen T. The influence of lipids on voltage-gated ion channels. Curr Opin Struct Biol. 2012;22:529–36.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Gantz SC, Bean BP. Cell-autonomous excitation of midbrain dopamine neurons by endocannabinoid-dependent lipid signaling. Neuron. 2017;93(6):1375–1387.e2.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Randich AM, et al. Biochemical and structural analysis of the hyperpolarization-activated K(+) channel MVP. Biochemistry. 2014;53(10):1627–36.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Amsalem M, et al. Membrane cholesterol depletion as a trigger of Nav1.9 channel-mediated inflammatory pain. EMBO J. 2018;37(8):e97349.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Calhoun JD, Isom LL. The role of non-pore-forming beta subunits in physiology and pathophysiology of voltage-gated sodium channels. Handb Exp Pharmacol. 2014;221:51–89.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Hofmann F, Belkacemi A, Flockerzi V. Emerging alternative functions for the auxiliary subunits of the voltage-gated calcium channels. Curr Mol Pharmacol. 2015;8(2):162–8.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Liu SL, et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat Chem Biol. 2017;13(3):268–74.PubMedCrossRefGoogle Scholar
  151. 151.
    Zheng H, et al. bSUM: a bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles. J Gen Physiol. 2016;147(1):77–93.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327(5961):46–50.PubMedCrossRefGoogle Scholar
  153. 153.
    Kaiser HJ, et al. Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci U S A. 2009;106(39):16645–50.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Coskun U, Simons K. Membrane rafting: from apical sorting to phase segregation. FEBS Lett. 2009;28:28.Google Scholar
  155. 155.
    Anderson RG. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225.PubMedCrossRefGoogle Scholar
  156. 156.
    Anderson RG. Transendothelial movement and caveolae. Nat Biotechnol. 2008;26(4):380–1; author reply 381-2.PubMedCrossRefGoogle Scholar
  157. 157.
    Mizuno H, et al. Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane. Chem Sci. 2011;2:1548.CrossRefGoogle Scholar
  158. 158.
    Klitzing HA, Weber PK, Kraft ML. Secondary ion mass spectrometry imaging of biological membranes at high spatial resolution. Methods Mol Biol. 2013;950:483–501.PubMedGoogle Scholar
  159. 159.
    Kraft ML. Sphingolipid organization in the plasma membrane and the mechanisms that influence it. Front Cell Dev Biol. 2016;4:154.PubMedGoogle Scholar
  160. 160.
    Richard M, Raquel F. Non-raft forming sphingomyelin-cholesterol mixtures. Chem Phys Lipids. 2004;132(1):37–46.CrossRefGoogle Scholar
  161. 161.
    Dietrich C, et al. Lipid rafts reconstituted in model membranes. Biophys J. 2001;80(3):1417–28.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Wang L, Bose PS, Sigworth FJ. Using cryo-EM to measure the dipole potential of a lipid membrane. Proc Natl Acad Sci U S A. 2006;103(49):18528–33.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Nyholm TK, et al. Construction of a DOPC/PSM/cholesterol phase diagram based on the fluorescence properties of trans-parinaric acid. Langmuir. 2011;27:8339.PubMedCrossRefGoogle Scholar
  164. 164.
    Kolter T, Sandhoff K. Sphingolipid metabolism diseases. Biochim Biophys Acta. 2006;1758(12):2057–79.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Cheng SH. Gene therapy for the neurological manifestations in lysosomal storage disorders. J Lipid Res. 2014;55:1827.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Bolsover FE, et al. Cognitive dysfunction and depression in Fabry disease: a systematic review. J Inherit Metab Dis. 2014;37(2):177–87.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Bellettato CM, Scarpa M. Pathophysiology of neuropathic lysosomal storage disorders. J Inherit Metab Dis. 2010;33(4):347–62.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Millard EE, et al. The sterol-sensing domain of the Niemann-Pick C1 (NPC1) protein regulates trafficking of low density lipoprotein cholesterol. J Biol Chem. 2005;280(31):28581–90.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Millard EE, et al. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis. J Biol Chem. 2000;275(49):38445–51.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Praggastis M, et al. A murine Niemann-Pick C1 I1061T knock-in model recapitulates the pathological features of the most prevalent human disease allele. J Neurosci. 2015;35(21):8091–106.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Andersson M, et al. Structural dynamics of the S4 voltage-sensor helix in lipid bilayers lacking phosphate groups. J Phys Chem B. 2011;115(27):8732–8.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    O’Connell KM, Martens JR, Tamkun MM. Localization of ion channels to lipid Raft domains within the cardiovascular system. Trends Cardiovasc Med. 2004;14(2):37–42.PubMedCrossRefGoogle Scholar
  173. 173.
    Martens JR, O’Connell K, Tamkun M. Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends Pharmacol Sci. 2004;25(1):16–21.PubMedCrossRefGoogle Scholar
  174. 174.
    Martens JR, et al. Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem. 2000;275(11):7443–6.PubMedCrossRefGoogle Scholar
  175. 175.
    Bichenkov E, Ellingson JS. Temporal and quantitative expression of the myelin-associated lipids, ethanolamine plasmalogen, galactocerebroside, and sulfatide, in the differentiating CG-4 glial cell line. Neurochem Res. 1999;24(12):1549–56.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Unwin N. Segregation of lipids near acetylcholine-receptor channels imaged by cryo-EM. IUCrJ. 2017;4(Pt 4):393–9.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Sun J, Comeau JF, Baenziger JE. Probing the structure of the uncoupled nicotinic acetylcholine receptor. Biochim Biophys Acta. 2017;1859(2):146–54.CrossRefGoogle Scholar
  178. 178.
    Brannigan G. Direct interactions of cholesterol with pentameric ligand-gated ion channels: testable hypotheses from computational predictions. Curr Top Membr. 2017;80:163–86.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    daCosta CJ, et al. A distinct mechanism for activating uncoupled nicotinic acetylcholine receptors. Nat Chem Biol. 2013;9(11):701–7.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Barrantes FJ. Cell-surface translational dynamics of nicotinic acetylcholine receptors. Front Synaptic Neurosci. 2014;6:25.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Gao Y, et al. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 2016;534(7607):347–51.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Microbiology and Cell Science, IFASUniversity of FloridaGainesvilleUSA

Personalised recommendations