Advertisement

Mass Spectrometry Imaging of Cholesterol

  • Stephanie M. ColognaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1115)

Abstract

Mass spectrometry imaging (MSI) has evolved as a significant tool to map biomolecules in situ without tags. This chapter describes advancements in mass spectrometry imaging technology and applications focused on mapping cholesterol. Secondary ion mass spectrometry (SIMS), matrix-assisted laser desorption/ionization (MALDI), and desorption electrospray (DESI) modes are described. These MSI technologies range in spatial resolution, and therefore different levels of mapping ranging from intracellular to whole tissue can be achieved. A variety of technical examples showing methods for cholesterol and cholesterol-derived molecular imaging are provided as well as imaging results from membrane dynamics, and genetic and drug treatment models. This emerging application of MSI for mapping cholesterol in biological specimens provides a new means to gain a deeper understanding of cholesterol distribution, and thereby insights into function.

Keywords

Label-free imaging Isotope Mapping Cholesterol Mass spectrometry 

References

  1. 1.
    Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):1015–35.PubMedGoogle Scholar
  2. 2.
    Luu W, Sharpe LJ, Gelissen IC, Brown AJ. The role of signalling in cellular cholesterol homeostasis. IUBMB Life. 2013;65(8):675–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Paik YK, Jeong SK, Lee EY, Jeong PY, Shim YH. C. elegans: an invaluable model organism for the proteomics studies of the cholesterol-mediated signaling pathway. Expert Rev Proteomics. 2006;3(4):439–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Edwards PA, Ericsson J. Signaling molecules derived from the cholesterol biosynthetic pathway: mechanisms of action and possible roles in human disease. Curr Opin Lipidol. 1998;9(5):433–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang Y, Ma KL, Ruan XZ, Liu BC. Dysregulation of the low-density lipoprotein receptor pathway is involved in lipid disorder-mediated organ injury. Int J Biol Sci. 2016;12(5):569–79.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Fessler MB. Regulation of adaptive immunity in health and disease by cholesterol metabolism. Curr Allergy Asthma Rep. 2015;15(8):48.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Vance JE. Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech. 2012;5(6):746–55.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Becker S, Rohnike S, Empting S, Haas D, Mohnike K, Beblo S, et al. LC-MS/MS-based quantification of cholesterol and related metabolites in dried blood for the screening of inborn errors of sterol metabolism. Anal Bioanal Chem. 2015;407(17):5227–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Blondelle J, Pais de Barros JP, Pilot-Storck F, Tiret L. Targeted lipidomic analysis of myoblasts by GC-MS and LC-MS/MS. Methods Mol Biol. 2017;1668:39–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Gamble LJ, Anderton CR. Secondary ion mass spectrometry imaging of tissues, cells, and microbial systems. Micros Today. 2016;24(2):24–31.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Nunez J, Renslow R, Cliff JB 3rd, Anderton CR. NanoSIMS for biological applications: current practices and analyses. Biointerphases. 2017;13(3):03B301.PubMedCrossRefGoogle Scholar
  12. 12.
    Kraft ML. Plasma membrane organization and function: moving past lipid rafts. Mol Biol Cell. 2013;24(18):2765–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Klitzing HA, Weber PK, Kraft ML. Secondary ion mass spectrometry imaging of biological membranes at high spatial resolution. In: Sousa AA, Kruhlak MJ, editors. Nanoimaging: methods and protocols. Totowa: Humana Press; 2013. p. 483–501.CrossRefGoogle Scholar
  14. 14.
    Frisz JF, Klitzing HA, Lou K, Hutcheon ID, Weber PK, Zimmerberg J, et al. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol. J Biol Chem. 2013;288(23):16855–61.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sjovall P, Lausmaa J, Nygren H, Carlsson L, Malmberg P. Imaging of membrane lipids in single cells by imprint-imaging time-of-flight secondary ion mass spectrometry. Anal Chem. 2003;75(14):3429–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Ostrowski SG, Kurczy ME, Roddy TP, Winograd N, Ewing AG. Quantitative SIMS imaging of cholesterol in the membranes of individual cells from differentially treated populations. Anal Chem. 2007;79(10):3554–60.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ostrowski SG, Kurczy ME, Roddy TP, Winograd N, Ewing AG. Secondary ion MS imaging to relatively quantify cholesterol in the membranes of individual cells from differentially treated populations. Anal Chem. 2007;79(10):3554–60.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Georgi N, Cillero-Pastor B, Eijkel GB, Periyasamy PC, Kiss A, van Blitterswijk C, et al. Differentiation of mesenchymal stem cells under hypoxia and normoxia: lipid profiles revealed by time-of-flight secondary ion mass spectrometry and multivariate analysis. Anal Chem. 2015;87(7):3981–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Lazar AN, Bich C, Panchal M, Desbenoit N, Petit VW, Touboul D, et al. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. Acta Neuropathol. 2013;125(1):133–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Sjovall P, Lausmaa J, Johansson B. Mass spectrometric imaging of lipids in brain tissue. Anal Chem. 2004;76(15):4271–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Nygren H, Borner K, Hagenhoff B, Malmberg P, Mansson JE. Localization of cholesterol, phosphocholine and galactosylceramide in rat cerebellar cortex with imaging TOF-SIMS equipped with a bismuth cluster ion source. Biochim Biophys Acta. 2005;1737(2–3):102–10.PubMedCrossRefGoogle Scholar
  22. 22.
    Cillero-Pastor B, Eijkel G, Kiss A, Blanco FJ, Heeren RM. Time-of-flight secondary ion mass spectrometry-based molecular distribution distinguishing healthy and osteoarthritic human cartilage. Anal Chem. 2012;84(21):8909–16.PubMedCrossRefGoogle Scholar
  23. 23.
    Brulet M, Seyer A, Edelman A, Brunelle A, Fritsch J, Ollero M, et al. Lipid mapping of colonic mucosa by cluster TOF-SIMS imaging and multivariate analysis in cftr knockout mice. J Lipid Res. 2010;51(10):3034–45.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sostarecz AG, McQuaw CM, Ewing AG, Winograd N. Phosphatidylethanolamine-induced cholesterol domains chemically identified with mass spectrometric imaging. J Am Chem Soc. 2004;126(43):13882–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Baker MJ, Zheng L, Winograd N, Lockyer NP, Vickerman JC. Mass spectral imaging of Glycophospholipids, cholesterol, and Glycophorin a in model cell membranes. Langmuir. 2008;24(20):11803–10.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    McQuaw CM, Sostarecz AG, Zheng L, Ewing AG, Winograd N. Lateral heterogeneity of dipalmitoylphosphatidylethanolamine−cholesterol Langmuir−Blodgett films investigated with imaging time-of-flight secondary ion mass spectrometry and atomic force microscopy. Langmuir. 2005;21(3):807–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Baluya DL, Garrett TJ, Yost RA. Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. Anal Chem. 2007;79(17):6862–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Hankin JA, Barkley RM, Murphy RC. Sublimation as a method of matrix application for mass spectrometric imaging. J Am Soc Mass Spectrom. 2007;18(9):1646–52.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Li S, Zhang Y, Liu J, Han J, Guan M, Yang H, et al. Electrospray deposition device used to precisely control the matrix crystal to improve the performance of MALDI MSI. Sci Rep. 2016;6:37903.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tucker LH, Conde-Gonzalez A, Cobice D, Hamm GR, Goodwin RJA, Campbell CJ, et al. MALDI matrix application utilizing a modified 3D printer for accessible high resolution mass spectrometry imaging. Anal Chem. 2018;90(15):8742–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Duenas ME, Feenstra AD, Korte AR, Hinners P, Lee YJ. Cellular and subcellular level localization of maize lipids and metabolites using high-spatial resolution MALDI mass spectrometry imaging. Methods Mol Biol. 2018;1676:217–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Feenstra AD, Duenas ME, Lee YJ. Five Micron high resolution MALDI mass spectrometry imaging with simple, interchangeable, multi-resolution optical system. J Am Soc Mass Spectrom. 2017;28(3):434–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Zaima N, Sasaki T, Tanaka H, Cheng XW, Onoue K, Hayasaka T, et al. Imaging mass spectrometry-based histopathologic examination of atherosclerotic lesions. Atherosclerosis. 2011;217(2):427–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Schober Y, Guenther S, Spengler B, Rompp A. Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem. 2012;84(15):6293–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Roux A, Muller L, Jackson SN, Post J, Baldwin K, Hoffer B, et al. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. J Neurosci Methods. 2016;272:19–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Castro-Perez J, Hatcher N, Kofi Karikari N, Wang SP, Mendoza V, Shion H, et al. In vivo isotopically labeled atherosclerotic aorta plaques in ApoE KO mice and molecular profiling by matrix-assisted laser desorption/ionization mass spectrometric imaging. Rapid Commun Mass Spectrom. 2014;28(22):2471–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Frohlich SM, Archodoulaki VM, Allmaier G, Marchetti-Deschmann M. MALDI-TOF mass spectrometry imaging reveals molecular level changes in ultrahigh molecular weight polyethylene joint implants in correlation with lipid adsorption. Anal Chem. 2014;86(19):9723–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3.CrossRefGoogle Scholar
  39. 39.
    Wu C, Ifa DR, Manicke NE, Cooks RG. Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal Chem. 2009;81(18):7618–24.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Manicke NE, Nefliu M, Wu C, Woods JW, Reiser V, Hendrickson RC, et al. Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal Chem. 2009;81(21):8702–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Wu C, Ifa DR, Manicke NE, Cooks RG. Molecular imaging of adrenal gland by desorption electrospray ionization mass spectrometry. Analyst. 2010;135(1):28–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Eberlin LS, Dill AL, Costa AB, Ifa DR, Cheng L, Masterson T, et al. Cholesterol sulfate imaging in human prostate cancer tissue by desorption electrospray ionization mass spectrometry. Anal Chem. 2010;82(9):3430–4.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Pirro V, Eberlin LS, Oliveri P, Cooks RG. Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections. Analyst. 2012;137(10):2374–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Altelaar AF, van Minnen J, Jimenez CR, Heeren RM, Piersma SR. Direct molecular imaging of Lymnaea stagnalis nervous tissue at subcellular spatial resolution by mass spectrometry. Anal Chem. 2005;77(3):735–41.PubMedCrossRefGoogle Scholar
  45. 45.
    Fitzgerald JJD, Kunnath P, Walker AV. Matrix-enhanced secondary ion mass spectrometry (ME SIMS) using room temperature ionic liquid matrices. Anal Chem. 2010;82(11):4413–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Dowlatshahi Pour M, Malmberg P, Ewing A. An investigation on the mechanism of sublimed DHB matrix on molecular ion yields in SIMS imaging of brain tissue. Anal Bioanal Chem. 2016;408(12):3071–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Fletcher JS, Lockyer NP, Vaidyanathan S, Vickerman JC. TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal Chem. 2007;79(6):2199–206.PubMedCrossRefGoogle Scholar
  48. 48.
    Yeager AN, Weber PK, Kraft ML. Three-dimensional imaging of cholesterol and sphingolipids within a Madin-Darby canine kidney cell. Biointerphases. 2016;11(2):02A309.PubMedCrossRefGoogle Scholar
  49. 49.
    Passarelli MK, Pirkl A, Moellers R, Grinfeld D, Kollmer F, Havelund R, et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat Methods. 2017;14(12):1175–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Sampson JS, Hawkridge AM, Muddiman DC. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom. 2006;17(12):1712–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Barry JA, Muddiman DC. Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments. Rapid Commun Mass Spectrom. 2011;25(23):3527–36.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Robichaud G, Barry JA, Muddiman DC. IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J Am Soc Mass Spectrom. 2014;25(3):319–28.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nazari M, Muddiman DC. Cellular level mass spectrometry imaging using infrared matrix assisted laser desorption electrospray ionization (IR-MALDESI) by oversampling. Anal Bioanal Chem. 2015;407(8):2265–71.PubMedCrossRefGoogle Scholar
  54. 54.
    Nygren H, Johansson BR, Malmberg P. Bioimaging TOF-SIMS of tissues by gold ion bombardment of a silver-coated thin section. Microsc Res Tech. 2004;65(6):282–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Altelaar AF, Klinkert I, Jalink K, de Lange RP, Adan RA, Heeren RM, et al. Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem. 2006;78(3):734–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Meier F, Garrard KP, Muddiman DC. Silver dopants for targeted and untargeted direct analysis of unsaturated lipids via infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Rapid Commun Mass Spectrom. 2014;28(22):2461–70.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Dufresne M, Thomas A, Breault-Turcot J, Masson JF, Chaurand P. Silver-assisted laser desorption ionization for high spatial resolution imaging mass spectrometry of olefins from thin tissue sections. Anal Chem. 2013;85(6):3318–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Muller L, Kailas A, Jackson SN, Roux A, Barbacci D, Schultz JA, et al. Lipid imaging within the normal rat kidney using silver nanoparticles by matrix-assisted laser desorption/ionization mass spectrometry. Kidney Int. 2015;88(1):186–92.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res. 2011;52(1):6–34.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Xu L, Kliman M, Forsythe JG, Korade Z, Hmelo AB, Porter NA, et al. Profiling and imaging ion mobility-mass spectrometry analysis of cholesterol and 7-dehydrocholesterol in cells via sputtered silver MALDI. J Am Soc Mass Spectrom. 2015;26(6):924–33.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mohammadi AS, Li X, Ewing AG. Mass spectrometry imaging suggests that cisplatin affects exocytotic release by alteration of cell membrane lipids. Anal Chem. 2018;90(14):8509–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Moreno-Gordaliza E, Esteban-Fernandez D, Lazaro A, Humanes B, Aboulmagd S, Tejedor A, et al. MALDI-LTQ-Orbitrap mass spectrometry imaging for lipidomic analysis in kidney under cisplatin chemotherapy. Talanta. 2017;164:16–26.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Laboratory of Integrated NeuroscienceUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations