Effect of Cholesterol on the Dipole Potential of Lipid Membranes

  • Ronald J. ClarkeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1115)


The membrane dipole potential, ψd, is an electrical potential difference with a value typically in the range 150–350 mV (positive in the membrane interior) which is located in the lipid headgroup region of the membrane, between the linkage of the hydrocarbon chains to the phospholipid glycerol backbone and the adjacent aqueous solution. At its physiological level in animal plasma membranes (up to 50 mol%), cholesterol makes a significant contribution to ψd of approximately 65 mV; the rest arising from other lipid components of the membrane, in particular phospholipids. Via its effect on ψd, cholesterol may modulate the activity of membrane proteins. This could occur through preferential stabilization of protein conformational states. Based on its effect on ψd, cholesterol would be expected to favour protein conformations associated with a small local hydrophobic membrane thickness. Via its membrane condensing effect, which also produces an increase in ψd, cholesterol could further modulate interactions of polybasic cytoplasmic extensions of membrane proteins, in particular P-type ATPases, with anionic lipid headgroups on the membrane surface, thus leading to enhanced conformational stabilization effects and changes to ion pumping activity.


Lipid headgroup Oxysterols Lipid packing Hydrophobic thickness Ion channels Ion pumps 



R.J.C. received financial support from the Australian Research Council (Discovery Grants DP-12003548, DP150103518 and DP170101732).


  1. 1.
    van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–24.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Subczynski WK, Pasenkiewicz-Gierula M, Widomska J, Mainali L, Raguz M. High cholesterol/low cholesterol: effects in biological membranes: a review. Cell Biochem Biophys. 2017;75:369–85.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Clarke RJ. Electric field sensitive dyes. In: Demchenko AP, editor. Advanced fluorescence reporters in chemistry and biology I. Fundamentals and molecular design. Berlin: Springer; 2010. p. 331–44.CrossRefGoogle Scholar
  4. 4.
    Sarkar P, Chattopadhyay A. Dipolar rearrangement during micellization explored using a potential-sensitive fluorescent probe. Chem Phys Lipids. 2015;191:91–5.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sarkar P, Chattopadhyay A. Micellar dipole potential is sensitive to sphere-to-rod transition. Chem Phys Lipids. 2016;195:34–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Seelig J, Macdonald PM, Scherer PG. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987;26:7535–41.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Gawrisch K, Ruston J, Zimmerberg J, Parsegian VA, Rand RP, Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane interfaces. Biophys J. 1992;61:1213–23.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mashl RJ, Scott HL, Subramaniam S, Jacobsson E. Molecular simulation of dioleoylphosphatidylcholine lipid bilayers at differing levels of hydration. Biophys J. 2001;81:3005–15.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Peterson U, Mannock DA, Lewis RNAH, Pohl P, McElhaney RN, Pohl EE. Origin of membrane dipole potential: Contribution of the phospholipid fatty acid chains. Chem Phys Lipids. 2002;117:19–27.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Starke-Peterkovic T, Clarke RJ. Effect of headgroup on the dipole potential of phospholipid vesicles. Eur Biophys J Biophys Lett. 2009;39:103–10.CrossRefGoogle Scholar
  11. 11.
    Gross E, Bedlack RS Jr, Loew LM. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J. 1994;67:208–16.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Brockman H. Dipole potential of lipid membranes. Chem Phys Lipids. 1994;73:57–79.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Clarke RJ. The dipole potential of phospholipid membranes and methods for its detection. Adv Colloid Interfac Sci. 2001;89-90:263–81.CrossRefGoogle Scholar
  14. 14.
    Wang L. Measurements and implications of the membrane dipole potential. Annu Rev Biochem. 2012;81:615–35.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hille B. Ionic channels of excitable membranes. 2nd ed. Sunderland: Sinauer Associates; 1992.Google Scholar
  16. 16.
    Liberman EA, Topaly VP. Permeability of bimolecular phospholipid membranes for fat-soluble ions. Biofizika. 1969;14:452–61. (In Russian).PubMedPubMedCentralGoogle Scholar
  17. 17.
    Andersen OS, Fuchs M. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. Biophys J. 1975;15:795–830.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Pickar AD, Benz R. Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures. J Membr Biol. 1978;44:353–76.CrossRefGoogle Scholar
  19. 19.
    Luzhkov V, Warshel A. Microscopic models for quantum mechanical calculations of chemical processes in solutions: LD/AMPAC and SCAAS/AMPAC calculations of solvation energies. J Comput Chem. 1992;13:199–213.CrossRefGoogle Scholar
  20. 20.
    Schamberger J, Clarke RJ. Hydrophobic ion hydration and the magnitude of the dipole potential. Biophys J. 2002;82:3081–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hladky SB, Haydon DA. Membrane conductance and surface potential. Biochim Biophys Acta. 1973;318:464–8.CrossRefGoogle Scholar
  22. 22.
    Beitinger H, Vogel V, Möbius D, Rahmann H. Surface potentials and electric dipole moments of ganglioside and phospholipid monolayers: contribution of the polar headgroup at the water/lipid interface. Biochim Biophys Acta. 1989;984:293–300.PubMedCrossRefGoogle Scholar
  23. 23.
    Clarke RJ. Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers. Biochim Biophys Acta Biomembr. 1997;1327:269–78.CrossRefGoogle Scholar
  24. 24.
    Warshaviak DT, Muellner MJ, Chachisvilis M. Effect of membrane tension on the electric field and dipole potential of lipid bilayer membrane. Biochim Biophys Acta Biomembr. 2011;1808:2608–17.CrossRefGoogle Scholar
  25. 25.
    Semchyschyn DJ, Macdonald PM. Conformational response of the phosphatidylcholine headgroup to bilayer surface charge: torsion angle constraints from dipolar and qudripolar couplings in bicelles. Magn Reson Chem. 2004;42:89–104.PubMedCrossRefGoogle Scholar
  26. 26.
    Rand RP, Parsegian VA. Hydration forces between phospholipid bilayers. Biochim Biophys Acta. 1989;988:351–76.CrossRefGoogle Scholar
  27. 27.
    Clarke RJ, Lüpfert C. Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. Biophys J. 1999;76:2614–24.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Szabo G. Dual mechanism for the action of cholesterol on membrane permeability. Nature. 1974;252:47–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Krull UJ. Bilayer lipid membrane permeabilityAn empirical model based on molecular packing/fluidity and membrane dipole potentials. J Electrochem Soc. 1987;134:1910–4.CrossRefGoogle Scholar
  30. 30.
    Starke-Peterkovic T, Turner N, Vitha MF, Waller MP, Hibbs DE, Clarke RJ. Cholesterol effect on the dipole potential of lipid membranes. Biophys J. 2006;90:4060–70.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Haldar S, Kanaparthi RK, Samanta A, Chattopadhyay A. Differential effect of cholesterol and its biosynthetic precursors on membrane dipole potential. Biophys J. 2012;102:1561–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Franklin JC, Cafiso DS. Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J. 1993;65:289–99.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Clarke RJ, Kane DJ. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. Biochim Biophys Acta Biomembr. 1997;1323:223–39.CrossRefGoogle Scholar
  34. 34.
    Franks NP. Structural analysis of hydrated egg lecithin and cholesterol bilayers. I. X-ray diffraction. J Mol Biol. 1976;100:345–58.PubMedCrossRefGoogle Scholar
  35. 35.
    McIntosh TJ. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim Biophys Acta. 1978;513:43–58.CrossRefGoogle Scholar
  36. 36.
    De Bernard L. Molecular associations between lipids. II. Lecithin and cholesterol. Bull Soc Chim Biol Paris. 1958;40:161–4. (In French).Google Scholar
  37. 37.
    Demel RA, De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976;457:109–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Hung W-C, Lee M-T, Chen F-Y, Huang HW. The condensing effect of cholesterol in lipid bilayers. Biophys J. 2007;92:3960–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Alwarawrah M, Dai J, Huang J. A molecular view of the cholesterol condensing effect in DOPC lipid bilayers. J Phys Chem B. 2010;114:7516–23.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Shinkyo R, Xu L, Tallman KA, Cheng Q, Porter NA, Guengerich FP. Conversion of 7-dehydrocholesterol to 7-ketocholesterol is catalysed by human cytochrome P450 7A1 and occurs by direct oxidation without an epoxide intermediate. J Biol Chem. 2011;286:33021–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gaus K, Dean RT, Kitharides L, Jessup W. Inhibition of cholesterol efflux by 7-ketocholesterol: Comparison between cells, plasma membrane vesicles, and liposomes as cholesterol donors. Biochemistry. 2001;40:13002–14.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Leonarduzzi G, Biasi F, Chiarpotto E, Poli G. Trojan horse-like behavior of a biologically representative mixture of oxysterols. Mol Asp Med. 2004;25:155–67.CrossRefGoogle Scholar
  43. 43.
    Mintzer E, Charles G, Gordon S. Interaction of two oxysterols, 7-ketocholesterol and 25-hydroxycholesterol, with phosphatidylcholine and sphingomyelin in model membranes. Chem Phys Lipids. 2010;163:586–93.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Telesford D-M, Verreault D, Rieck-Mitrisin V, Allen HC. Reduced condensing and ordering effects by 7-ketocholesterol and 5β,6β-epoxycholesterol on DPPC monolayers. Langmuir. 2015;31:9859–69.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wnętrzak A, Makyła-Juzak K, Filiczkowska A, Kulig W, Dynarowicz-Łątka P. Oxysterols versus cholesterol in model neuronal membrane. I. The case of 7-ketocholesterol. The Langmuir monolayer study. J Membr Biol. 2017;250:553–64.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Leoni V, Caccia C. Oxysterols as biomarkers in neurodegenerative diseases. Chem Phys Lipids. 2011;164:515–24.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ramsammy LS, Chauhan VPS, Box LL, Brockerhoff H. Interactions in the hydrogen belts of membranes: cholesterol leaving phosphatidylcholine bilayers. Biochem Biophys Res Commun. 1984;118:743–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Parker A, Miles K, Cheng KH, Huang J. Lateral distribution of cholesterol in dioleoylphosphatidylcholine lipid bilayers: cholesterol-phospholipid interactions at high cholesterol limit. Biophys J. 2004;86:1532–44.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jedlovsky P, Medvedev N, Mezei M. Effect of cholesterol on the properties of phospholipid membranes. 3. Local lateral structure. J Phys Chem B. 2004;108:465–72.CrossRefGoogle Scholar
  50. 50.
    Bamberg E, Noda K, Gross E, Läuger P. Single-channel parameters of gramicidin A, B and C. Biochim Biophys Acta. 1976;419:223–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Ostroumova OS, Malev VV, Bessonov AN, Takemoto JY, Schagina LV. Altering the activity of syringomycin E via membrane dipole potential. Langmuir. 2008;24:2987–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Jordan PC. Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential. Biophys J. 1983;41:189–95.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mares LJ, Garcia A, Rasmussen HH, Cornelius F, Mahmmoud YA, Berlin JR, Lev B, Allen TW, Clarke RJ. Identification of electric-field-dependent steps in the Na+,K+-pump cycle. Biophys J. 2014;107:1352–63.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhang J, Loew LM, Davidson RM. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells. Biophys J. 1996;71:2501–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bedlack RS Jr, M-d W, Fox SH, Gross E, Loew LM. Distinct electric potentials in soma and neurite membranes. Neuron. 1994;13:1187–93.PubMedCrossRefGoogle Scholar
  56. 56.
    Ganea C, Babes A, Lüpfert C, Grell E, Fendler K, Clarke RJ. Hofmeister effects of anions on the kinetics of partial reactions of the Na+,K+-ATPase. Biophys J. 1999;77:267–81.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gadsby DC, Rakowski RF, De Weer P. Extracellular access to the Na,K pump: pathway similar to ion channel. Science. 1993;260:100–3.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hilgemann DW. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science. 1994;263:1429–32.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Wuddel I, Apell H-J. Electrogenicity of the sodium transport pathway in the Na,K-ATPase probed by charge-pulse experiments. Biophys J. 1995;69:909–21.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rakowski RF, Gadsby DC, De Weer P. Voltage dependence of the Na/K pump. J Membr Biol. 1997;155:105–12.PubMedCrossRefGoogle Scholar
  61. 61.
    Babes A, Fendler K. Na+ transport, and the E1P-E2P conformational transition of the Na+/K+-ATPase. Biophys J. 2000;79:2557–71.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gadsby DC, Bezanilla F, Rakowski RF, De Weer P, Holmgren M. The dynamic relationships between the three events that release individual Na+ ions from the Na+/K+-ATPase. Nat Commun. 2012;3:669.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Clarke RJ. Dipole-potential-mediated effects on ion pump kinetics. Biophys J. 2015;109:1513–20.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mouritsen OG, Bloom M. Mattress model of lipid-protein interactions in membranes. Biophys J. 1984;46:141–53.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Peschke J, Riegler J, Möhwald H. Quantitative analysis of membrane distortions induced by mismatch of protein and lipid hydrophobic thickness. Eur Biophys J Biophys Lett. 1987;14:385–91.CrossRefGoogle Scholar
  66. 66.
    Mouritsen OG, Bloom M. Models of lipid-protein interactions in membranes. Annu Rev Biophys Biomol Struct. 1993;22:145–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Fattal DR, Ben-Shaul A. A molecular model for lipid-protein interactions in membranes: the role of hydrophobic mismatch. Biophys J. 1993;65:1795–809.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Clarke RJ, Zouni A, Holzwarth J. Voltage sensitivity of the fluorescent probe RH421 in a model membrane system. Biophys J. 1995;68:1406–15.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Cornelius F, Habeck M, Kanai R, Toyoshima C, Karlish SJD. General and specific lipid-protein interactions in Na,K-ATPase. Biochim Biophys Acta Biomembr. 2015;1848:1729–43.CrossRefGoogle Scholar
  70. 70.
    Pearlstein RA, Dickson CJ, Hornak V. Contributions of the membrane dipole potential to the function of voltage-gated cation channels and modulation by small molecule potentiators. Biochim Biophys Acta Biomembr. 2017;1859:177–94.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Norimatsu Y, Hasegawa K, Shimizu N, Toyoshima C. Protein-phospholipid interplay revealed with crystals of a calcium pump. Nature. 2017;545:193–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Li L, Shi X, Guo X, Li H, Xu C. Ionic protein-lipid interaction at the plasma membrane: what can the charge do? Trends Biochem Sci. 2014;39:130–40.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Volodkin D, Mohwald H, Voegel J-C, Ball V. Coating of negatively charged liposomes by polylysine: drug release study. J Control Release. 2007;117:111–20.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Reuter M, Schwieger C, Meister A, Karlsson G, Blume A. Poly-L-lysines and poly-L-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane. Biophys Chem. 2009;144:27–37.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hädicke A, Blume A. Binding of the cationic peptide (KL)4K to lipid monolayers at the air-water interface: effect of lipid headgroup, acyl chain length, and acyl chain saturation. J Phys Chem B. 2016;120:3880–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Garcia A, Pratap PR, Lüpfert C, Cornelius F, Jacquemin D, Lev B, Allen TW, Clarke RJ. The voltage-sensitive dye RH421 detects a Na+,K+-ATPase conformational change at the membrane surface. Biochim Biophys Acta Biomembr. 2017;1859:813–23.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Jiang Q, Garcia A, Han M, Cornelius F, Apell H-J, Khandelia H, Clarke RJ. Electrostatic stabilization plays a central role in autoinhibitory regulation of the Na+,K+-ATPase. Biophys J. 2017;112:288–99.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Nguyen K, Garcia A, Sani M-A, Diaz D, Dubey V, Clayton D, Dal Poggetto G, Cornelius F, Payne RJ, Separovic F, Khandelia H, Clarke RJ. Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes. Biochim Biophys Acta Biomembr. 2018;1860(6):1282–91.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Yeagle PL, Young J, Rice D. Effects of cholesterol on sodium-potassium ATPase ATP hydrolyzing activity in bovine kidney. Biochemistry. 1988;27:6449–52.PubMedCrossRefGoogle Scholar
  80. 80.
    Cornelius F. Cholesterol modulation of molecular activity of reconstituted shark Na+,K+-ATPase. Biochim Biophys Acta Biomembr. 1995;1235:205–12.CrossRefGoogle Scholar
  81. 81.
    Sotomayor CP, Aguilar LF, Cuevas FJ, Helms MK, Jameson DM. Modulation of pig kidney Na+/K+-ATPase activity by cholesterol: Role of hydration. Biochemistry. 2000;39:10928–35.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Starke-Peterkovic T, Turner N, Else PL, Clarke RJ. Electric field strength of membrane lipids from vertebrate species: membrane lipid composition and Na+-K+-ATPase molecular activity. Am J Physiol Regul Comp Physiol. 2005;288:R663–70.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Sydney, School of ChemistrySydneyAustralia

Personalised recommendations