A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR–cholesterol interaction.
Keywords
GPCR–cholesterol interaction Specific effect General effect Cholesterol binding motifsAbbreviations
- 7-DHC
7-Dehydrocholesterol
- 7-DHCR
3β-Hydroxy-steroid-Δ7-reductase
- 24-DHCR
3β-Hydroxy-steroid-Δ24-reductase
- AY 9944
trans-1,4-bis(2-chlorobenzylaminoethyl)cyclohexane dihydrochloride
- CB
Cannabinoid receptor
- CCK
Cholecystokinin receptor
- CCM
Cholesterol consensus motif
- CCR5
CC chemokine receptor 5
- CRAC
Cholesterol recognition/interaction amino acid consensus
- CXCR4
CXC chemokine receptor 4
- GalR2
Galanin receptor 2
- GPCR
G protein-coupled receptor
- MβCD
Methyl-β-cyclodextrin
- MI
Metarhodopsin I
- MII
Metarhodopsin II
- mGluR
Metabotropic glutamate receptor
- SLOS
Smith–Lemli–Opitz syndrome
- Smo
Smoothened
- T2R4
Bitter taste receptor 4
Notes
Acknowledgments
A.C. gratefully acknowledges support from SERB Distinguished Fellowship (Department of Science and Technology, Govt. of India). G.A.K. and B.D.R. thank the Council of Scientific and Industrial Research and University Grants Commission for the award of Senior Research Fellowships, respectively. A.C. is a Distinguished Visiting Professor at Indian Institute of Technology, Bombay (Mumbai), and Adjunct Professor at Tata Institute of Fundamental Research (Mumbai), RMIT University (Melbourne, Australia), and Indian Institute of Science Education and Research (Kolkata). Some of the work described in this article was carried out by former members of A.C.’s research group whose contributions are gratefully acknowledged. We thank members of the Chattopadhyay laboratory, particularly Parijat Sarkar, for comments and discussions.
References
- 1.Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3:639–50.PubMedCrossRefGoogle Scholar
- 2.Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–63.PubMedPubMedCentralCrossRefGoogle Scholar
- 3.Chattopadhyay A. GPCRs: lipid-dependent membrane receptors that act as drug targets. Adv Biol. 2014;2014:143023.CrossRefGoogle Scholar
- 4.Zhang Y, DeVries ME, Skolnick J. Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol. 2006;2:e13.PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev. 2000;21:90–113.PubMedCrossRefGoogle Scholar
- 6.Weis WI, Kobilka BK. The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem. 2018;87:897–919.PubMedCrossRefGoogle Scholar
- 7.Heilker R, Wolff M, Tautermann CS, Bieler M. G-protein-coupled receptor-focused drug discovery using a target class platform approach. Drug Discov Today. 2009;14:231–40.PubMedCrossRefGoogle Scholar
- 8.Cooke RM, Brown AJH, Marshall FH, Mason JS. Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today. 2015;20:1355–64.PubMedCrossRefGoogle Scholar
- 9.Jacobson KA. New paradigms in GPCR drug discovery. Biochem Pharmacol. 2015;98:541–55.PubMedPubMedCentralCrossRefGoogle Scholar
- 10.Kumari P, Ghosh E, Shukla AK. Emerging approaches to GPCR ligand screening for drug discovery. Trends Mol Med. 2015;21:687–701.PubMedCrossRefGoogle Scholar
- 11.Gutierrez AN, McDonald PH. GPCRs: emerging anti-cancer drug targets. Cell Signal. 2018;41:65–74.CrossRefGoogle Scholar
- 12.Thomsen W, Frazer J, Unett D. Functional assays for screening GPCR targets. Curr Opin Biotechnol. 2005;16:655–65.PubMedGoogle Scholar
- 13.Schlyer S, Horuk R. I want a new drug: G-protein-coupled receptors in drug development. Drug Discov Today. 2006;11:481–93.PubMedCrossRefGoogle Scholar
- 14.Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42.PubMedCrossRefGoogle Scholar
- 15.Lin SHS, Civelli O. Orphan G protein-coupled receptors: targets for new therapeutic interventions. Ann Med. 2004;36:204–14.PubMedCrossRefGoogle Scholar
- 16.Stockert JA, Devi LA. Advancements in therapeutically targeting orphan GPCRs. Front Pharmacol. 2015;6:100.PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Huber T, Botelho AV, Beyer K, Brown MF. Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. Biophys J. 2004;86:2078–100.PubMedPubMedCentralCrossRefGoogle Scholar
- 18.van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–24.PubMedPubMedCentralCrossRefGoogle Scholar
- 19.van Meer G, de Kroon AIPM. Lipid map of the mammalian cell. J Cell Sci. 2011;124:5–8.PubMedCrossRefGoogle Scholar
- 20.Brown AJ, Galea AM. Cholesterol as an evolutionary response to living with oxygen. Evolution. 2010;64:2179–83.PubMedPubMedCentralGoogle Scholar
- 21.Kumar GA, Chattopadhyay A. Cholesterol: an evergreen molecule in biology. Biomed Spectrosc Imaging. 2016;5:S55–66.CrossRefGoogle Scholar
- 22.Chaudhuri A, Chattopadhyay A. Transbilayer organization of membrane cholesterol at low concentrations: implications in health and disease. Biochim Biophys Acta. 2011;1808:19–25.PubMedCrossRefPubMedCentralGoogle Scholar
- 23.Fantini J, Barrantes FJ. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim Biophys Acta. 2009;1788:2345–61.PubMedCrossRefPubMedCentralGoogle Scholar
- 24.Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol. 2013;4:31.PubMedPubMedCentralGoogle Scholar
- 25.Simons K, Ikonen E. How cells handle cholesterol. Science. 2000;290:1721–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 26.Xu X, London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry. 2000;39:843–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 27.Mukherjee S, Maxfield FR. Membrane domains. Annu Rev Cell Dev Biol. 2004;20:839–66.PubMedCrossRefPubMedCentralGoogle Scholar
- 28.Lingwood D, Simons K. Lipid rafts as a membrane organizing principle. Science. 2010;327:46–50.PubMedCrossRefGoogle Scholar
- 29.Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988;27:6197–202.PubMedCrossRefGoogle Scholar
- 30.Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 31.van der Goot FG, Harder T. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol. 2001;13:89–97.PubMedCrossRefPubMedCentralGoogle Scholar
- 32.Pucadyil TJ, Chattopadhyay A. Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol. 2007;23:49–53.PubMedCrossRefPubMedCentralGoogle Scholar
- 33.Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R. Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell. 2010;102:391–407.PubMedCrossRefPubMedCentralGoogle Scholar
- 34.Chattopadhyay A, Jafurulla M. Role of membrane cholesterol in leishmanial infection. Adv Exp Med Biol. 2012;749:201–13.PubMedCrossRefPubMedCentralGoogle Scholar
- 35.Kumar GA, Jafurulla M, Chattopadhyay A. The membrane as the gatekeeper of infection: cholesterol in host-pathogen interaction. Chem Phys Lipids. 2016;199:179–85.PubMedCrossRefPubMedCentralGoogle Scholar
- 36.Pucadyil TJ, Chattopadhyay A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res. 2006;45:295–333.PubMedCrossRefPubMedCentralGoogle Scholar
- 37.Paila YD, Chattopadhyay A. Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem. 2010;51:439–66.PubMedCrossRefPubMedCentralGoogle Scholar
- 38.Oates J, Watts A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol. 2011;21:802–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 39.Jafurulla M, Chattopadhyay A. Membrane lipids in the function of serotonin and adrenergic receptors. Curr Med Chem. 2013;20:47–55.PubMedCrossRefPubMedCentralGoogle Scholar
- 40.Sengupta D, Chattopadhyay A. Molecular dynamics simulations of GPCR-cholesterol interaction: an emerging paradigm. Biochim Biophys Acta. 2015;1848:1775–82.PubMedCrossRefPubMedCentralGoogle Scholar
- 41.Gimpl G. Interaction of G protein coupled receptors and cholesterol. Chem Phys Lipids. 2016;199:61–73.PubMedCrossRefPubMedCentralGoogle Scholar
- 42.Sengupta D, Prasanna X, Mohole M, Chattopadhyay A. Exploring GPCR-lipid interactions by molecular dynamics simulations: excitements, challenges and the way forward. J Phys Chem B. 2018;122:5727–37.PubMedCrossRefPubMedCentralGoogle Scholar
- 43.Paila YD, Murty MRVS, Vairamani M, Chattopadhyay A. Signaling by the human serotonin1A receptor is impaired in cellular model of Smith–Lemli–Opitz syndrome. Biochim Biophys Acta. 2008;1778:1508–16.PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol. 2001;12:105–12.PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Chattopadhyay A, Paila YD. Lipid-protein interactions, regulation and dysfunction of brain cholesterol. Biochem Biophys Res Commun. 2007;354:627–33.PubMedCrossRefPubMedCentralGoogle Scholar
- 46.Martin M, Dotti CG, Ledesma MD. Brain cholesterol in normal and pathological aging. Biochim Biophys Acta. 2010;1801:934–44.PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Karnell FG, Brezski RJ, King LG, Silverman MA, Monroe JG. Membrane cholesterol content accounts for developmental differences in surface B cell receptor compartmentalization and signaling. J Biol Chem. 2005;280:25621–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 48.Paila YD, Chattopadhyay A. The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction? Glycoconj J. 2009;26:711–20.PubMedCrossRefPubMedCentralGoogle Scholar
- 49.Paila YD, Tiwari S, Chattopadhyay A. Are specific nonannular cholesterol binding sites present in G-protein coupled receptors? Biochim Biophys Acta. 2009;1788:295–302.PubMedCrossRefPubMedCentralGoogle Scholar
- 50.Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta. 2004;1666:105–17.PubMedCrossRefGoogle Scholar
- 51.Kalipatnapu S, Chattopadhyay A. Membrane protein solubilization: recent advances and challenges in solubilization of serotonin1A receptors. IUBMB Life. 2005;57:505–12.PubMedCrossRefGoogle Scholar
- 52.Privé GG. Detergents for the stabilization and crystallization of membrane proteins. Methods. 2007;41:388–97.PubMedCrossRefGoogle Scholar
- 53.Duquesne K, Sturgis JN. Membrane protein solubilization. Methods Mol Biol. 2010;601:205–17.PubMedCrossRefGoogle Scholar
- 54.Chattopadhyay A, Rao BD, Jafurulla M. Solubilization of G protein-coupled receptors: a convenient strategy to explore lipid-receptor interaction. Methods Enzymol. 2015;557:117–34.PubMedCrossRefGoogle Scholar
- 55.Goddard AD, Dijkman PM, Adamson RJ, dos Reis RI, Watts A. Reconstitution of membrane proteins: a GPCR as an example. Methods Enzymol. 2015;556:405–24.PubMedCrossRefGoogle Scholar
- 56.Serebryany E, Zhu GA, Yan ECY. Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors. Biochim Biophys Acta. 2012;1818:225–33.PubMedCrossRefGoogle Scholar
- 57.Chattopadhyay A, Jafurulla M, Kalipatnapu S, Pucadyil TJ, Harikumar KG. Role of cholesterol in ligand binding and G-protein coupling of serotonin1A receptors solubilized from bovine hippocampus. Biochem Biophys Res Commun. 2005;327:1036–41.PubMedCrossRefGoogle Scholar
- 58.Chattopadhyay A, Paila YD, Jafurulla M, Chaudhuri A, Singh P, Murty MRVS, et al. Differential effects of cholesterol and 7-dehydrocholesterol on ligand binding of solubilized hippocampal serotonin1A receptors: implications in SLOS. Biochem Biophys Res Commun. 2007;363:800–5.PubMedCrossRefGoogle Scholar
- 59.Singh P, Jafurulla M, Paila YD, Chattopadhyay A. Desmosterol replaces cholesterol for ligand binding function of the serotonin1A receptor in solubilized hippocampal membranes: support for nonannular binding sites for cholesterol? Biochim Biophys Acta. 2011;1808:2428–34.PubMedCrossRefGoogle Scholar
- 60.Jafurulla M, Rao BD, Sreedevi S, Ruysschaert J-M, Covey DF, Chattopadhyay A. Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. Biochim Biophys Acta. 2014;1838:158–63.PubMedCrossRefGoogle Scholar
- 61.Nes WD. Biosynthesis of cholesterol and other sterols. Chem Rev. 2011;111:6423–51.PubMedPubMedCentralCrossRefGoogle Scholar
- 62.Levitt ES, Clark MJ, Jenkins PM, Martens JR, Traynor JR. Differential effect of membrane cholesterol removal on μ- and δ-opioid receptors: a parallel comparison of acute and chronic signaling to adenylyl cyclase. J Biol Chem. 2009;284:22108–22.PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Shrivastava S, Pucadyil TJ, Paila YD, Ganguly S, Chattopadhyay A. Chronic cholesterol depletion using statin impairs the function and dynamics of human serotonin1A receptors. Biochemistry. 2010;49:5426–35.PubMedCrossRefGoogle Scholar
- 64.Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001;292:1160–4.CrossRefGoogle Scholar
- 65.Mizuno GR, Chapman CJ, Chipault JR, Pfeiffer DR. Lipid composition and (Na++K+)-ATPase activity in rat lens during triparanol-induced cataract formation. Biochim Biophys Acta. 1981;644:1–12.PubMedCrossRefGoogle Scholar
- 66.Kolf-Clauw M, Chevy F, Wolf C, Siliart B, Citadelle D, Roux C. Inhibition of 7-dehydrocholesterol reductase by the teratogen AY9944: a rat model for Smith-Lemli-Opitz syndrome. Teratology. 1996;54:115–25.PubMedCrossRefGoogle Scholar
- 67.Kandutsch AA, Russell AE. Preputial gland tumor sterols. A metabolic pathway from lanosterol to cholesterol. J Biol Chem. 1960;235:2256–61.PubMedGoogle Scholar
- 68.Bloch KE. Sterol structure and membrane function. CRC Crit Rev Biochem. 1983;14:47–92.PubMedCrossRefGoogle Scholar
- 69.Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res. 2011;52:6–34.PubMedPubMedCentralCrossRefGoogle Scholar
- 70.Kanungo S, Soares N, He M, Steiner RD. Sterol metabolism disorders and neurodevelopment-an update. Dev Disabil Res Rev. 2013;17:197–210.PubMedCrossRefGoogle Scholar
- 71.Gaoua W, Wolf C, Chevy F, Ilien F, Roux C. Cholesterol deficit but not accumulation of aberrant sterols is the major cause of the teratogenic activity in the Smith-Lemli-Opitz syndrome animal model. J Lipid Res. 2000;41:637–46.PubMedGoogle Scholar
- 72.Chevy F, Illien F, Wolf C, Roux C. Limb malformations of rat fetuses exposed to a distal inhibitor of cholesterol biosynthesis. J Lipid Res. 2002;43:1192–200.PubMedGoogle Scholar
- 73.Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta. 2007;1768:1311–24.PubMedPubMedCentralCrossRefGoogle Scholar
- 74.López CA, de Vries AH, Marrink SJ. Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci Rep. 2013;3:2071.PubMedPubMedCentralCrossRefGoogle Scholar
- 75.Niu S-L, Mitchell DC, Litman BJ. Manipulation of cholesterol levels in rod disk membranes by methyl-β-cyclodextrin: effects on receptor activation. J Biol Chem. 2002;277:20139–45.PubMedCrossRefPubMedCentralGoogle Scholar
- 76.Gimpl G, Burger K, Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997;36:10959–74.PubMedCrossRefPubMedCentralGoogle Scholar
- 77.Pang L, Graziano M, Wang S. Membrane cholesterol modulates galanin-GalR2 interaction. Biochemistry. 1999;38:12003–11.PubMedCrossRefPubMedCentralGoogle Scholar
- 78.Pucadyil TJ, Chattopadhyay A. Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim Biophys Acta. 2004;1663:188–200.PubMedCrossRefGoogle Scholar
- 79.Pucadyil TJ, Chattopadhyay A. Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin1A receptor in the plasma membrane of living cells. Biochim Biophys Acta. 2007;1768:655–68.PubMedCrossRefGoogle Scholar
- 80.Bari M, Battista N, Fezza F, Finazzi-Agrò A, Maccarrone M. Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. J Biol Chem. 2005;280:12212–20.CrossRefGoogle Scholar
- 81.Bari M, Paradisi A, Pasquariello N, Maccarrone M. Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells. J Neurosci Res. 2005;81:275–83.PubMedCrossRefGoogle Scholar
- 82.Bari M, Spagnuolo P, Fezza F, Oddi S, Pasquariello N, Finazzi-Agrò A, et al. Effect of lipid rafts on Cb2 receptor signaling and 2-arachidonoyl-glycerol metabolism in human immune cells. J Immunol. 2006;177:4971–80.PubMedCrossRefGoogle Scholar
- 83.Pydi SP, Jafurulla M, Wai L, Bhullar RP, Chelikani P, Chattopadhyay A. Cholesterol modulates bitter taste receptor function. Biochim Biophys Acta. 2016;1858:2081–7.PubMedCrossRefGoogle Scholar
- 84.Chattopadhyay A, Jafurulla M, Pucadyil TJ. Ligand binding and G-protein coupling of the serotonin1A receptor in cholesterol-enriched hippocampal membranes. Biosci Rep. 2006;26:79–87.PubMedCrossRefGoogle Scholar
- 85.Sarkar P, Chakraborty H, Chattopadhyay A. Differential membrane dipolar orientation induced by acute and chronic cholesterol depletion. Sci Rep. 2017;7:4484.PubMedPubMedCentralCrossRefGoogle Scholar
- 86.Sampson NS, Vrielink A. Cholesterol oxidases: a study of nature’s approach to protein design. Acc Chem Res. 2003;36:713–22.PubMedCrossRefGoogle Scholar
- 87.Pucadyil TJ, Shrivastava S, Chattopadhyay A. Membrane cholesterol oxidation inhibits ligand binding function of hippocampal serotonin1A receptors. Biochem Biophys Res Commun. 2005;331:422–7.PubMedCrossRefGoogle Scholar
- 88.Jafurulla M, Nalli A, Chattopadhyay A. Membrane cholesterol oxidation in live cells enhances the function of serotonin1A receptors. Chem Phys Lipids. 2017;203:71–7.PubMedCrossRefGoogle Scholar
- 89.Boesze-Battaglia K, Albert AD. Cholesterol modulation of photoreceptor function in bovine retinal rod outer segments. J Biol Chem. 1990;265:20727–30.PubMedGoogle Scholar
- 90.Nguyen DH, Taub D. Inhibition of chemokine receptor function by membrane cholesterol oxidation. Exp Cell Res. 2003;291:36–45.PubMedCrossRefPubMedCentralGoogle Scholar
- 91.Holz RW. The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann N Y Acad Sci. 1974;235:469–79.PubMedCrossRefPubMedCentralGoogle Scholar
- 92.Nishikawa M, Nojima S, Akiyama T, Sankawa U, Inoue K. Interaction of digitonin and its analogs with membrane cholesterol. J Biochem. 1984;96:1231–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 93.Bolard J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta. 1986;864:257–304.PubMedCrossRefPubMedCentralGoogle Scholar
- 94.Coutinho A, Prieto M. Cooperative partition model of nystatin interaction with phospholipid vesicles. Biophys J. 2003;84:3061–78.PubMedPubMedCentralCrossRefGoogle Scholar
- 95.Savinov SN, Heuck AP. Interaction of cholesterol with perfringolysin O: what have we learned from functional analysis? Toxins. 2017;9:381.PubMedCentralCrossRefGoogle Scholar
- 96.Pucadyil TJ, Shrivastava S, Chattopadhyay A. The sterol-binding antibiotic nystatin differentially modulates ligand binding of the bovine hippocampal serotonin1A receptor. Biochem Biophys Res Commun. 2004;320:557–62.PubMedCrossRefPubMedCentralGoogle Scholar
- 97.Paila YD, Pucadyil TJ, Chattopadhyay A. The cholesterol-complexing agent digitonin modulates ligand binding of the bovine hippocampal serotonin1A receptor. Mol Membr Biol. 2005;22:241–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 98.Pucadyil TJ, Kalipatnapu S, Chattopadhyay A. The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol. 2005;25:553–80.PubMedCrossRefPubMedCentralGoogle Scholar
- 99.Kalipatnapu S, Chattopadhyay A. Membrane organization and function of the serotonin1A receptor. Cell Mol Neurobiol. 2007;27:1097–116.PubMedCrossRefPubMedCentralGoogle Scholar
- 100.Müller CP, Carey RJ, Huston JP, De Souza Silva MA. Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol. 2007;81:133–78.PubMedCrossRefPubMedCentralGoogle Scholar
- 101.Lacivita E, Leopoldo M, Berardi F, Perrone R. 5-HT1A receptor, an old target for new therapeutic agents. Curr Top Med Chem. 2008;8:1024–34.PubMedCrossRefPubMedCentralGoogle Scholar
- 102.Fiorino F, Severino B, Magli E, Ciano A, Caliendo G, Santagada V, et al. 5-HT1A receptor: an old target as a new attractive tool in drug discovery from central nervous system to cancer. J Med Chem. 2014;57:4407–26.PubMedCrossRefPubMedCentralGoogle Scholar
- 103.Singh P, Paila YD, Chattopadhyay A. Differential effects of cholesterol and 7-dehydrocholesterol on the ligand binding activity of the hippocampal serotonin1A receptor: implications in SLOS. Biochem Biophys Res Commun. 2007;358:495–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 104.Saxena R, Chattopadhyay A. Membrane cholesterol stabilizes the human serotonin1A receptor. Biochim Biophys Acta. 2012;1818:2936–42.PubMedCrossRefPubMedCentralGoogle Scholar
- 105.Paila YD, Tiwari S, Sengupta D, Chattopadhyay A. Molecular modeling of the human serotonin1A receptor: role of membrane cholesterol in ligand binding of the receptor. Mol BioSyst. 2011;7:224–34.PubMedCrossRefPubMedCentralGoogle Scholar
- 106.Patra SM, Chakraborty S, Shahane G, Prasanna X, Sengupta D, Maiti PK, et al. Differential dynamics of the serotonin1A receptor in membrane bilayers of varying cholesterol content revealed by all atom molecular dynamics simulation. Mol Membr Biol. 2015;32:127–37.PubMedCrossRefPubMedCentralGoogle Scholar
- 107.Burger K, Gimpl G, Fahrenholz F. Regulation of receptor function by cholesterol. Cell Mol Life Sci. 2000;57:1577–92.PubMedCrossRefPubMedCentralGoogle Scholar
- 108.Klein U, Gimpl G, Fahrenholz F. Alteration of the myometrial plasma membrane cholesterol content with β-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry. 1995;34:13784–93.PubMedCrossRefPubMedCentralGoogle Scholar
- 109.Gimpl G, Fahrenholz F. Cholesterol as stabilizer of the oxytocin receptor. Biochim Biophys Acta. 2002;1564:384–92.PubMedCrossRefPubMedCentralGoogle Scholar
- 110.Nguyen DH, Taub D. Cholesterol is essential for macrophage inflammatory protein 1 beta binding and conformational integrity of CC chemokine receptor 5. Blood. 2002;99:4298–306.PubMedCrossRefGoogle Scholar
- 111.Nguyen DH, Taub D. CXCR4 function requires membrane cholesterol: implications for HIV infection. J Immunol. 2002;168:4121–6.PubMedCrossRefGoogle Scholar
- 112.Behrens M, Meyerhof W. Bitter taste receptors and human bitter taste perception. Cell Mol Life Sci. 2006;63:1501–9.PubMedCrossRefGoogle Scholar
- 113.Oddi S, Dainese E, Fezza F, Lanuti M, Barcaroli D, De Laurenzi V, et al. Functional characterization of putative cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J Neurochem. 2011;116:858–65.PubMedCrossRefGoogle Scholar
- 114.Harikumar KG, Puri V, Singh RD, Hanada K, Pagano RE, Miller LJ. Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J Biol Chem. 2005;280:2176–85.PubMedCrossRefGoogle Scholar
- 115.Potter RM, Harikumar KG, Wu SV, Miller LJ. Differential sensitivity of types 1 and 2 cholecystokinin receptors to membrane cholesterol. J Lipid Res. 2012;53:137–48.PubMedPubMedCentralCrossRefGoogle Scholar
- 116.Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science. 2007;318:1258–65.PubMedPubMedCentralCrossRefGoogle Scholar
- 117.Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P, Chein YET, et al. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure. 2008;16:897–905.PubMedPubMedCentralCrossRefGoogle Scholar
- 118.Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, et al. Conserved binding mode of human β 2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc. 2010;132:11443–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 119.Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, et al. Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature. 2011;469:236–40.PubMedPubMedCentralCrossRefGoogle Scholar
- 120.Staus DP, Strachan RT, Manglik A, Pani B, Kahsai AW, Kim TH, et al. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature. 2016;535:448–52.PubMedPubMedCentralCrossRefGoogle Scholar
- 121.Huang C-Y, Olieric V, Ma P, Howe N, Vogeley L, Liu X, et al. In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr D Struct Biol. 2016;72:93–112.PubMedPubMedCentralCrossRefGoogle Scholar
- 122.Liu X, Ahn S, Kahsai AW, Meng K-C, Latorraca NR, Pani B, et al. Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature. 2017;548:480–4.PubMedPubMedCentralCrossRefGoogle Scholar
- 123.Ma P, Weichert D, Aleksandrov LA, Jensen TJ, Riordan JR, Liu X, et al. The cubicon method for concentrating membrane proteins in the cubic mesophase. Nat Protoc. 2017;12:1745–62.PubMedCrossRefGoogle Scholar
- 124.Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012;337:232–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 125.Batyuk A, Galli L, Ishchenko A, Han GW, Gati C, Popov PA, et al. Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. Sci Adv. 2016;2:e1600292.PubMedPubMedCentralCrossRefGoogle Scholar
- 126.Segala E, Guo D, Cheng RKY, Bortolato A, Deflorian F, Doré AS, et al. Controlling the dissociation of ligands from the adenosine A2A receptor through modulation of salt bridge strength. J Med Chem. 2016;59:6470–9.PubMedCrossRefGoogle Scholar
- 127.Martin-Garcia JM, Conrad CE, Nelson G, Stander N, Zatsepin NA, Zook J, et al. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ. 2017;4:439–54.PubMedPubMedCentralCrossRefGoogle Scholar
- 128.Weinert T, Olieric N, Cheng R, Brünle S, James D, Ozerov D, et al. Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nat Commun. 2017;8:542.PubMedPubMedCentralCrossRefGoogle Scholar
- 129.Cheng RKY, Segala E, Robertson N, Deflorian F, Doré AS, Errey JC, et al. Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity. Structure. 2017;25:1275–85.PubMedCrossRefGoogle Scholar
- 130.Melnikov I, Polovinkin V, Kovalev K, Gushchin I, Shevtsov M, Shevchenko V, et al. Fast iodide-SAD phasing for high-throughput membrane protein structure determination. Sci Adv. 2017;3:e1602952.PubMedPubMedCentralCrossRefGoogle Scholar
- 131.Broecker J, Morizumi T, Ou W-L, Klingel V, Kuo A, Kissick DJ, et al. High-throughput in situ X-ray screening of and data collection from protein crystals at room temperature and under cryogenic conditions. Nat Protoc. 2018;13:260–92.PubMedCrossRefPubMedCentralGoogle Scholar
- 132.Eddy MT, Lee M-Y, Gao Z-G, White KL, Didenko T, Horst R, et al. Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell. 2018;172:68–80.PubMedCrossRefPubMedCentralGoogle Scholar
- 133.Rucktooa P, Cheng RKY, Segala E, Geng T, Errey JC, Brown GA, et al. Towards high throughput GPCR crystallography: in meso soaking of adenosine A2A receptor crystals. Sci Rep. 2018;8:41.PubMedPubMedCentralCrossRefGoogle Scholar
- 134.Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, et al. Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell. 2018;172:55–67.PubMedPubMedCentralCrossRefGoogle Scholar
- 135.Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature. 2012;485:321–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 136.Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, et al. Structural insights into μ-opioid receptor activation. Nature. 2015;524:315–21.PubMedPubMedCentralCrossRefGoogle Scholar
- 137.Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science. 2014;344:58–64.PubMedPubMedCentralCrossRefGoogle Scholar
- 138.Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, et al. Structural basis of smoothened regulation by its extracellular domains. Nature. 2016;535:517–22.PubMedPubMedCentralCrossRefGoogle Scholar
- 139.Huang P, Zheng S, Wierbowski BM, Kim Y, Nedelcu D, Aravena L, et al. Structural basis of smoothened activation in hedgehog signaling. Cell. 2018;174:1–13.CrossRefGoogle Scholar
- 140.Wacker D, Wang C, Katritch V, Han GW, Huang X-P, Vardy E, et al. Structural features for functional selectivity at serotonin receptors. Science. 2013;340:615–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 141.Liu W, Wacker D, Gati C, Han GW, James D, Wang D, et al. Serial femtosecond crystallography of G protein-coupled receptors. Science. 2013;342:1521–4.PubMedPubMedCentralCrossRefGoogle Scholar
- 142.Wacker D, Wang S, McCorvy JD, Betz RM, Venkatakrishnan AJ, Levit A, et al. Crystal structure of an LSD-bound human serotonin receptor. Cell. 2017;168:377–89.PubMedPubMedCentralCrossRefGoogle Scholar
- 143.Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, et al. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature. 2017;547:468–71.PubMedPubMedCentralCrossRefGoogle Scholar
- 144.Oswald C, Rappas M, Kean J, Doré AS, Errey JC, Bennett K, et al. Intracellular allosteric antagonism of the CCR9 receptor. Nature. 2016;540:462–5.PubMedCrossRefGoogle Scholar
- 145.Shihoya W, Nishizawa T, Yamashita K, Inoue A, Hirata K, Kadji FMN, et al. X-ray structures of endothelin ETB receptor bound to clinical antagonist bosentan and its analog. Nat Struct Mol Biol. 2017;24:758–64.PubMedCrossRefGoogle Scholar
- 146.Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, et al. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science. 2015;347:1113–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 147.Zhang D, Gao Z-G, Zhang K, Kiselev E, Crane S, Wang J, et al. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature. 2015;520:317–21.PubMedPubMedCentralCrossRefGoogle Scholar
- 148.Zhang J, Zhang K, Gao Z-G, Paoletta S, Zhang D, Han GW, et al. Agonist-bound structure of the human P2Y12 receptor. Nature. 2014;509:119–22.PubMedPubMedCentralCrossRefGoogle Scholar
- 149.Zhang K, Zhang J, Gao Z-G, Zhang D, Zhu L, Han GW, et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature. 2014;509:115–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 150.Yao Z, Kobilka B. Using synthetic lipids to stabilize purified 𝛽2 adrenoceptor in detergent micelles. Anal Biochem. 2005;343:344–6.PubMedCrossRefGoogle Scholar
- 151.Pontier SM, Percherancier Y, Galandrin S, Breit A, Galés C, Bouvier M. Cholesterol-dependent separation of the β2-adrenergic receptor from its partners determines signaling efficacy: insight into nanoscale organization of signal transduction. J Biol Chem. 2008;283:24659–72.PubMedPubMedCentralCrossRefGoogle Scholar
- 152.Paila YD, Jindal E, Goswami SK, Chattopadhyay A. Cholesterol depletion enhances adrenergic signaling in cardiac myocytes. Biochim Biophys Acta. 2011;1808:461–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 153.Zocher M, Zhang C, Rasmussen SGF, Kobilka BK, Müller DJ. Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor. Proc Natl Acad Sci U S A. 2012;109:E3463–72.PubMedPubMedCentralCrossRefGoogle Scholar
- 154.Lam RS, Nahirney D, Duszyk M. Cholesterol-dependent regulation of adenosine A2A receptor-mediated anion secretion in colon epithelial cells. Exp Cell Res. 2009;315:3028–35.PubMedCrossRefPubMedCentralGoogle Scholar
- 155.Xu W, Yoon S-I, Huang P, Wang Y, Chen C, Chong PL-G, et al. Localization of the κ opioid receptor in lipid rafts. J Pharmacol Exp Ther. 2006;317:1295–306.PubMedCrossRefPubMedCentralGoogle Scholar
- 156.Huang P, Xu W, Yoon S-I, Chen C, Chong PL-G, Liu-Chen LY. Cholesterol reduction by methyl-β-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem Pharmacol. 2007;73:534–49.PubMedCrossRefPubMedCentralGoogle Scholar
- 157.Eroglu C, Brügger B, Wieland F, Sinning I. Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts. Proc Natl Acad Sci U S A. 2003;100:10219–24.PubMedPubMedCentralCrossRefGoogle Scholar
- 158.Kumari R, Castillo C, Francesconi A. Agonist-dependent signaling by group I metabotropic glutamate receptors is regulated by association with lipid domains. J Biol Chem. 2013;288:32004–19.PubMedPubMedCentralCrossRefGoogle Scholar
- 159.Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, et al. Cellular cholesterol directly activates smoothened in hedgehog signaling. Cell. 2016;166:1176–87.PubMedPubMedCentralCrossRefGoogle Scholar
- 160.Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science. 1996;274:255–9.CrossRefGoogle Scholar
- 161.Turner JH, Gelasco AK, Raymond JR. Calmodulin interacts with the third intracellular loop of the serotonin 5-hydroxytryptamine1A receptor at two distinct sites. Putative role in receptor phosphorylation by protein kinase C. J Biol Chem. 2004;279:17027–37.PubMedCrossRefPubMedCentralGoogle Scholar
- 162.Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R, Logan RT, et al. Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol. 2012;165:1688–703.PubMedPubMedCentralCrossRefGoogle Scholar
- 163.Pal S, Aute R, Sarkar P, Bose S, Deshmukh MV, Chattopadhyay A. Constrained dynamics of the sole tryptophan in the third intracellular loop of the serotonin1A receptor. Biophys Chem. 2018;240:34–41.PubMedCrossRefPubMedCentralGoogle Scholar
- 164.Day PW, Rasmussen SGF, Parnot C, Fung JJ, Masood A, Kobilka TS, et al. A monoclonal antibody for G protein-coupled receptor crystallography. Nat Methods. 2007;4:927–9.PubMedCrossRefGoogle Scholar
- 165.Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science. 2007;318:1266–73.PubMedCrossRefGoogle Scholar
- 166.Caffrey M. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun. 2015;71:3–18.PubMedPubMedCentralCrossRefGoogle Scholar
- 167.Khelashvili G, Albornoz PBC, Johner N, Mondal S, Caffrey M, Weinstein H. Why GPCRs behave differently in cubic and lamellar lipidic mesophases. J Am Chem Soc. 2012;134:15858–68.PubMedPubMedCentralCrossRefGoogle Scholar
- 168.Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res. 2006;45:279–94.PubMedCrossRefGoogle Scholar
- 169.Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–7.PubMedCrossRefGoogle Scholar
- 170.Vincent N, Genin C, Malvoisin E. Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups. Biochim Biophys Acta. 2002;1567:157–64.PubMedCrossRefGoogle Scholar
- 171.Epand RM, Sayer BG, Epand RF. Caveolin scaffolding region and cholesterol-rich domains in membranes. J Mol Biol. 2005;345:339–50.PubMedCrossRefGoogle Scholar
- 172.Jafurulla M, Tiwari S, Chattopadhyay A. Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun. 2011;404:569–73.PubMedCrossRefGoogle Scholar
- 173.Sengupta D, Chattopadhyay A. Identification of cholesterol binding sites in the serotonin1A receptor. J Phys Chem B. 2012;116:12991–6.PubMedCrossRefGoogle Scholar
- 174.Baier CJ, Fantini J, Barrantes FJ. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep. 2011;1:69.PubMedPubMedCentralCrossRefGoogle Scholar
- 175.Fantini J, Di Scala C, Evans LS, Williamson PTF, Barrantes FJ. A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes. Sci Rep. 2016;6:21907.PubMedPubMedCentralCrossRefGoogle Scholar
- 176.Ballesteros JA, Weinstein H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 1995;25:366–428.CrossRefGoogle Scholar
- 177.Prasanna X, Chattopadhyay A, Sengupta D. Cholesterol modulates the dimer interface of the β 2-adrenergic receptor via cholesterol occupancy sites. Biophys J. 2014;106:1290–300.PubMedPubMedCentralCrossRefGoogle Scholar
- 178.Oates J, Faust B, Attrill H, Harding P, Orwick M, Watts A. The role of cholesterol on the activity and stability of neurotensin receptor 1. Biochim Biophys Acta. 2012;1818:2228–33.PubMedCrossRefPubMedCentralGoogle Scholar
- 179.Lee AG. Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta. 2003;1612:1–40.PubMedCrossRefPubMedCentralGoogle Scholar
- 180.Simmonds AC, East JM, Jones OT, Rooney EK, McWhirter J, Lee AG. Annular and non-annular binding sites on the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta. 1982;693:398–406.PubMedCrossRefPubMedCentralGoogle Scholar
- 181.Jones OT, McNamee MG. Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry. 1988;27:2364–74.PubMedCrossRefPubMedCentralGoogle Scholar
- 182.Marius P, Zagnoni M, Sandison ME, East JM, Morgan H, Lee AG. Binding of anionic lipids to at least three nonannular sites on the potassium channel KcsA is required for channel opening. Biophys J. 2008;94:1689–98.PubMedPubMedCentralCrossRefGoogle Scholar
- 183.Guixà-González R, Albasanz JL, Rodriguez-Espigares I, Pastor M, Sanz F, Martí-Solano M, et al. Membrane cholesterol access into a G-protein-coupled receptor. Nat Commun. 2017;8:14505.PubMedPubMedCentralCrossRefGoogle Scholar
- 184.McIntosh TJ. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim Biophys Acta. 1978;513:43–58.PubMedCrossRefGoogle Scholar
- 185.Simon SA, McIntosh TJ, Latorre R. Influence of cholesterol on water penetration into bilayers. Science. 1982;216:65–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 186.Nezil FA, Bloom M. Combined influence of cholesterol and synthetic amphiphilic peptides upon bilayer thickness in model membranes. Biophys J. 1992;61:1176–83.PubMedPubMedCentralCrossRefGoogle Scholar
- 187.McMullen TPW, Lewis RNAH, McElhaney RN. Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines. Biochemistry. 1993;32:516–22.PubMedCrossRefPubMedCentralGoogle Scholar
- 188.Chen Z, Rand RP. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J. 1997;73:267–76.PubMedPubMedCentralCrossRefGoogle Scholar
- 189.Arora A, Raghuraman H, Chattopadhyay A. Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach. Biochem Biophys Res Commun. 2004;318:920–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 190.Bacia K, Schwille P, Kurzchalia T. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc Natl Acad Sci U S A. 2005;102:3272–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 191.Starke-Peterkovic T, Turner N, Vitha MF, Waller MP, Hibbs DE, Clarke RJ. Cholesterol effect on the dipole potential of lipid membranes. Biophys J. 2006;90:4060–70.PubMedPubMedCentralCrossRefGoogle Scholar
- 192.Haldar S, Kanaparthi RK, Samanta A, Chattopadhyay A. Differential effect of cholesterol and its biosynthetic precursors on membrane dipole potential. Biophys J. 2012;102:1561–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 193.Yeagle P. The membranes of cells. 3rd ed. Orlando, FL: Academic Press; 2016. p. 200–7.Google Scholar
- 194.Brejchová J, Sýkora J, Dlouhá K, Roubalová L, Ostašov P, Vošahlíková M, et al. Fluorescence spectroscopy studies of HEK293 cells expressing DOR-Gi1α fusion protein; the effect of cholesterol depletion. Biochim Biophys Acta. 2011;1808:2819–29.PubMedCrossRefPubMedCentralGoogle Scholar
- 195.Soubias O, Gawrisch K. The role of the lipid matrix for structure and function of the GPCR rhodopsin. Biochim Biophys Acta. 2012;1818:234–40.PubMedCrossRefPubMedCentralGoogle Scholar
- 196.Pal S, Chakraborty H, Bandari S, Yahioglu G, Suhling K, Chattopadhyay A. Molecular rheology of neuronal membranes explored using a molecular rotor: implications for receptor function. Chem Phys Lipids. 2016;196:69–75.PubMedCrossRefPubMedCentralGoogle Scholar
- 197.Brown MF. Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids. 1994;73:159–80.PubMedCrossRefGoogle Scholar
- 198.Brown MF. Soft matter in lipid-protein interactions. Annu Rev Biophys. 2017;46:379–410.PubMedCrossRefGoogle Scholar
- 199.Mitchell DC, Straume M, Miller JL, Litman BJ. Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry. 1990;29:9143–9.PubMedCrossRefGoogle Scholar
- 200.Falck E, Patra M, Karttunen M, Hyvönen MT, Vattulainen I. Impact of cholesterol on voids in phospholipid membranes. J Chem Phys. 2004;121:12676–89.PubMedCrossRefPubMedCentralGoogle Scholar
- 201.Jafurulla M, Chattopadhyay A. Structural stringency of cholesterol for membrane protein function utilizing stereoisomers as novel tools: a review. Methods Mol Biol. 2017;1583:21–39.PubMedCrossRefPubMedCentralGoogle Scholar
- 202.Singh P, Haldar S, Chattopadhyay A. Differential effect of sterols on dipole potential in hippocampal membranes: implications for receptor function. Biochim Biophys Acta. 2013;1828:917–23.PubMedCrossRefPubMedCentralGoogle Scholar
- 203.Clarke RJ. The dipole potential of phospholipid membranes and methods for its detection. Adv Colloid Interface Sci. 2001;89-90:263–81.PubMedCrossRefPubMedCentralGoogle Scholar
- 204.Duffin RL, Garrett MP, Busath DD. Modulation of lipid bilayer interfacial dipole potential by phloretin, RH421, and 6-ketocholestanol as probed by gramicidin channel conductance. Langmuir. 2003;19:1439–42.CrossRefGoogle Scholar
- 205.Starke-Peterkovic T, Turner N, Else PL, Clarke RJ. Electric field strength of membrane lipids from vertebrate species: membrane lipid composition and Na+-K+-ATPase molecular activity. Am J Physiol Regul Integr Comp Physiol. 2005;288:R663–70.PubMedCrossRefPubMedCentralGoogle Scholar
- 206.Bandari S, Chakraborty H, Covey DF, Chattopadhyay A. Membrane dipole potential is sensitive to cholesterol stereospecificity: implications for receptor function. Chem Phys Lipids. 2014;184:25–9.PubMedCrossRefGoogle Scholar
- 207.Oakes V, Domene C. Stereospecific interactions of cholesterol in a model cell membrane: implications for the membrane dipole potential. J Membr Biol. 2018;251:507–19.PubMedCrossRefPubMedCentralGoogle Scholar
- 208.Mickus DE, Levitt DG, Rychnovsky SD. Enantiomeric cholesterol as a probe of ion-channel structure. J Am Chem Soc. 1992;114:359–60.CrossRefGoogle Scholar
- 209.Covey DF. ent-Steroids: novel tools for studies of signaling pathways. Steroids. 2009;74:577–85.PubMedCrossRefPubMedCentralGoogle Scholar
- 210.D’Avanzo N, Hyrc K, Enkvetchakul D, Covey DF, Nichols CG. Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol. PLoS One. 2011;6:e19393.PubMedPubMedCentralCrossRefGoogle Scholar
- 211.Kristiana I, Luu W, Stevenson J, Cartland S, Jessup W, Belani JD, et al. Cholesterol through the looking glass: ability of its enantiomer also to elicit homeostatic responses. J Biol Chem. 2012;287:33897–904.PubMedPubMedCentralCrossRefGoogle Scholar
- 212.Westover EJ, Covey DF. The enantiomer of cholesterol. J Membr Biol. 2004;202:61–72.PubMedCrossRefGoogle Scholar