Advertisement

Rotating Black Holes

  • Geoffrey Compère
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 952)

Abstract

For this last lecture, we will focus on particular properties of astrophysically realistic 4d black holes, which are rotating and uncharged. We will concentrate on the stationary Kerr black hole solution which is the final state of collapse of matter. After reviewing its main features, we will study the maximally spinning limit of the Kerr solution, the extremal Kerr black hole. It is a very interesting solution because it admits near horizon limits with enhanced conformal symmetry. The limiting near-horizon geometries share features with anti-de Sitter spacetimes where holography and therefore quantum gravity is most understood. The attempts (with successes and failures) to describe the extremal Kerr black hole with holographic techniques is called the Kerr/CFT correspondence and will be briefly reviewed here.

The final part of these lectures will be devoted to the analysis of gravitational perturbations around Kerr geometries. The Kerr black hole is currently under experimental tests by the LIGO/Virgo gravitational wave detectors. The final stages of black hole mergers consist in a quasi-normal mode ringing of the resulting black hole which is well-described by perturbation theory around the Kerr black hole. Since the Kerr black hole only depends upon two parameters, namely the mass and angular momentum, the resonance frequencies of the black hole are characteristic signatures of Einstein gravity. The emerging experimental science of black hole spectroscopy will soon test the limits of Einstein gravity and look for possible deviations.

References

  1. 1.
    A.J. Amsel, G.T. Horowitz, D. Marolf, M.M. Roberts, No dynamics in the extremal Kerr throat. J. High Energy Phys. 09, 044 (2009). arXiv:0906.2376 [hep-th]; http://dx.doi.org/10.1088/1126-6708/2009/09/044 ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Aretakis, The wave equation on extreme Reissner-Nordstrom black hole spacetimes: stability and instability results. arXiv:1006.0283 [math.AP]
  3. 3.
    T. Azeyanagi, G. Compère, N. Ogawa, Y. Tachikawa, S. Terashima, Higher-derivative corrections to the asymptotic virasoro symmetry of 4d extremal black holes. Prog. Theor. Phys. 122, 355–384 (2009). arXiv:0903.4176 [hep-th]; http://dx.doi.org/10.1143/PTP.122.355 ADSCrossRefGoogle Scholar
  4. 4.
    V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari, J. Simon, What is a chiral 2d CFT? And what does it have to do with extremal black holes?. J. High Energy Phys. 02, 017 (2010). arXiv:0906.3272 [hep-th]
  5. 5.
    J.M. Bardeen, G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS(2) x S 2. Phys. Rev. D60, 104030 (1999). arXiv:hep-th/9905099 [hep-th]; http://dx.doi.org/10.1103/PhysRevD.60.104030
  6. 6.
    J.M. Bardeen, W.H. Press, S.A. Teukolsky, Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347 (1972). http://dx.doi.org/10.1086/151796 ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973). http://dx.doi.org/10.1007/BF01645742 ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J.D. Bekenstein, Black holes and the second law. Nuovo Cimento Lettere 4, 737–740 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    E. Berti’s homepage, Ringdown. https://pages.jh.edu/~eberti2/ringdown/. Accessed 05 Sep 2018
  10. 10.
    E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001 (2009). arXiv:0905.2975 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/26/16/163001 ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R.D. Blandford, R.L. Znajek, Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977). http://dx.doi.org/10.1093/mnras/179.3.433 ADSCrossRefGoogle Scholar
  12. 12.
    I. Bredberg, T. Hartman, W. Song, A. Strominger, Black hole superradiance from Kerr/CFT. J. High Energy Phys. 04, 019 (2010). arXiv:0907.3477 [hep-th]; http://dx.doi.org/10.1007/JHEP04(2010)019
  13. 13.
    J.D. Brown, M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986). http://dx.doi.org/10.1007/BF01211590 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    B. Carter, Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968). http://dx.doi.org/10.1103/PhysRev.174.1559 ADSCrossRefGoogle Scholar
  15. 15.
    B. Carter, Black hole equilibrium states, in Black Holes - Les astres occlus, ed. by C. Dewitt, B.S. Dewitt (Gordon and Breach Science Publishers, New York, 1973), pp. 61–124. Reprinted as Carter, B. Gen Relativ Gravit 41, 2873 (2009). https://doi.org/10.1007/s10714-009-0888-5 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    B. Carter, Killing tensor quantum numbers and conserved currents in curved space. Phys. Rev. D16, 3395–3414 (1977). http://dx.doi.org/10.1103/PhysRevD.16.3395 ADSMathSciNetGoogle Scholar
  17. 17.
    A. Castro, A. Maloney, A. Strominger, Hidden conformal symmetry of the Kerr black hole. Phys. Rev. D82, 024008 (2010). arXiv:1004.0996 [hep-th]; http://dx.doi.org/10.1103/PhysRevD.82.024008
  18. 18.
    S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon, Oxford, 1985/1992), 646 pp.Google Scholar
  19. 19.
    M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9–12 (1993). http://dx.doi.org/10.1103/PhysRevLett.70.9 ADSCrossRefGoogle Scholar
  20. 20.
    D. Christodoulou, S. Klainerman, The global nonlinear stability of the Minkowski space. Princeton Legacy Library, 1993Google Scholar
  21. 21.
    A. Coley, R. Milson, V. Pravda, A. Pravdova, Classification of the Weyl tensor in higher dimensions. Class. Quant. Grav. 21, L35–L42 (2004). arXiv:gr-qc/0401008 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/21/7/L01 ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    G. Compère, The Kerr/CFT correspondence and its extensions: a comprehensive review. Living Rev. Rel. 15, 11 (2012). arXiv:1203.3561 [hep-th]
  23. 23.
    G. Compère, K. Hajian, A. Seraj, M.M. Sheikh-Jabbari, Wiggling throat of extremal black holes. J. High Energy Phys. 10, 093 (2015). arXiv:1506.07181 [hep-th]; http://dx.doi.org/10.1007/JHEP10(2015)093
  24. 24.
    G. Compère, K. Hajian, A. Seraj, M. Sheikh-Jabbari, Extremal rotating black holes in the near-horizon limit: phase space and symmetry algebra (2015). arXiv:1503.07861 [hep-th]
  25. 25.
    G. Compère, P. Mao, A. Seraj, M.M. Sheikh-Jabbari, Symplectic and killing symmetries of AdS3 gravity: holographic vs boundary gravitons. J. High Energy Phys. 01, 080 (2016). arXiv:1511.06079 [hep-th]; http://dx.doi.org/10.1007/JHEP01(2016)080
  26. 26.
    G. Compère, K. Fransen, T. Hertog, J. Long, Gravitational waves from plunges into Gargantua (2018). arXiv:1712.07130 [gr-qc] ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    G.B. Cook, M. Zalutskiy, Gravitational perturbations of the Kerr geometry: high-accuracy study. Phys. Rev. D90(12), 124021 (2014). arXiv:1410.7698 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.90.124021
  28. 28.
    M. Cvetic, F. Larsen, Conformal symmetry for black holes in four dimensions. J. High Energy Phys. 09, 076 (2012). arXiv:1112.4846 [hep-th]; http://dx.doi.org/10.1007/JHEP09(2012)076
  29. 29.
    M. Dafermos, I. Rodnianski, Y. Shlapentokh-Rothman, Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case —a— < M. arXiv:1402.7034 [gr-qc]
  30. 30.
    O.J.C. Dias, H.S. Reall, J.E. Santos, Kerr-CFT and gravitational perturbations. J. High Energy Phys. 08, 101 (2009). arXiv:0906.2380 [hep-th]; http://dx.doi.org/10.1088/1126-6708/2009/08/101 MathSciNetCrossRefGoogle Scholar
  31. 31.
    V. Frolov, P. Krtous, D. Kubiznak, Black holes, hidden symmetries, and complete integrability. Living Rev. Rel. 20(1), 6 (2017). arXiv:1705.05482 [gr-qc]; http://dx.doi.org/10.1007/s41114-017-0009-9
  32. 32.
    R. Fujita, W. Hikida, Analytical solutions of bound timelike geodesic orbits in Kerr spacetime. Class. Quant. Grav. 26, 135002 (2009). arXiv:0906.1420 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/26/13/135002 ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    S.E. Gralla, A. Lupsasca, A. Strominger, Observational signature of high spin at the event horizon telescope. arXiv:1710.11112 [astro-ph.HE]
  34. 34.
    M. Guica, T. Hartman, W. Song, A. Strominger, The Kerr/CFT correspondence. Phys. Rev. D80, 124008 (2009). arXiv:0809.4266 [hep-th]; http://dx.doi.org/10.1103/PhysRevD.80.124008
  35. 35.
    T. Hartman, C.A. Keller, B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit. J. High Energy Phys. 09, 118 (2014). arXiv:1405.5137 [hep-th]; http://dx.doi.org/10.1007/JHEP09(2014)118
  36. 36.
    S. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975). http://dx.doi.org/10.1007/BF02345020 ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    E.G. Kalnins, W. Miller Jr., G.C. Williams, Separability of wave equations. Fundam. Theor. Phys. 100, 33–52 (1999). http://dx.doi.org/10.1007/978-94-017-0934-7_3 MathSciNetzbMATHGoogle Scholar
  38. 38.
    D. Kapec, P. Mitra, A.-M. Raclariu, A. Strominger, 2D stress tensor for 4D gravity. Phys. Rev. Lett. 119(12), 121601 (2017). arXiv:1609.00282 [hep-th]; http://dx.doi.org/10.1103/PhysRevLett.119.121601
  39. 39.
    W. Kinnersley, Type D vacuum metrics. J. Math. Phys. 10, 1195–1203 (1969). http://dx.doi.org/10.1063/1.1664958 ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    R.A. Konoplya, A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory. Rev. Mod. Phys. 83, 793–836 (2011). arXiv:1102.4014 [gr-qc]; http://dx.doi.org/10.1103/RevModPhys.83.793 ADSCrossRefGoogle Scholar
  41. 41.
    E.W. Leaver, An analytic representation for the quasi normal modes of Kerr black holes. Proc. R. Soc. Lond. A402, 285–298 (1985). http://dx.doi.org/10.1098/rspa.1985.0119 ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    A. Lupsasca, A.P. Porfyriadis, Y. Shi, Critical emission from a high-spin black hole. arXiv:1712.10182 [gr-qc]
  43. 43.
    C. Merlin, A. Ori, L. Barack, A. Pound, M. van de Meent, Completion of metric reconstruction for a particle orbiting a Kerr black hole. Phys. Rev. D94(10), 104066 (2016). arXiv:1609.01227 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.94.104066
  44. 44.
    K. Murata, H.S. Reall, N. Tanahashi, What happens at the horizon(s) of an extreme black hole?. Class. Quant. Grav. 30, 235007 (2013). arXiv:1307.6800 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/30/23/235007 ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Ori, Evolution of linear gravitational and electromagnetic perturbations inside a Kerr black hole. Phys. Rev. D 61(2), 024001 (2000). http://dx.doi.org/10.1103/PhysRevD.61.024001
  46. 46.
    S. Pasterski, S.-H. Shao, A. Strominger, Flat space amplitudes and conformal symmetry of the celestial sphere. Phys. Rev. D96(6), 065026 (2017). arXiv:1701.00049 [hep-th]; http://dx.doi.org/10.1103/PhysRevD.96.065026
  47. 47.
    A.Z. Petrov, The classification of spaces defining gravitational fields. Uchenye Zapiski Kazanskogo Gosudarstvennogo Universiteta im. V. I. Ulyanovicha-Lenina [Scientific Proceedings of Kazan State University, named after V.I. Ulyanov-Lenin] 114(8), 55–69 (1954)). Jubilee (1804–1954) Collection 114 (1954)Google Scholar
  48. 48.
    T. Piran, J. Shaham, J. Katz, High efficiency of the Penrose mechanism for particle collisions. Astrophys. J. Lett. 196, L107 (1975). http://dx.doi.org/10.1086/181755 ADSCrossRefGoogle Scholar
  49. 49.
    W.H. Press, Long wave trains of gravitational waves from a vibrating black hole. Astrophys. J. 170, L105 (1971). http://dx.doi.org/10.1086/180849 ADSCrossRefGoogle Scholar
  50. 50.
    T. Regge, J.A. Wheeler, Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957). http://dx.doi.org/10.1103/PhysRev.108.1063 ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, 2004). http://www.cambridge.org/gb/academic/subjects/physics/theoretical-physics-and-mathematical-physics/exact-solutions-einsteins-field-equations-2nd-edition?format=PB zbMATHGoogle Scholar
  52. 52.
    S.A. Teukolsky, Rotating black holes - separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29, 1114–1118 (1972). http://dx.doi.org/10.1103/PhysRevLett.29.1114 ADSCrossRefGoogle Scholar
  53. 53.
    S.A. Teukolsky, The Kerr metric. Class. Quant. Grav. 32(12), 124006 (2015). arXiv:1410.2130 [gr-qc]; http://dx.doi.org/10.1088/0264-9381/32/12/124006
  54. 54.
    K.S. Thorne, Disk accretion onto a black hole. 2. Evolution of the hole. Astrophys. J. 191, 507–520 (1974). http://dx.doi.org/10.1086/152991 ADSCrossRefGoogle Scholar
  55. 55.
    K. Thorne, C. Nolan, The Science of Interstellar (W. W. Norton, New York, 2014). https://books.google.be/books?id=PbWYBAAAQBAJ Google Scholar
  56. 56.
    P.K. Townsend, Black holes: lecture notes. arXiv:gr-qc/9707012 [gr-qc]
  57. 57.
    Virgo, LIGO Scientific Collaboration, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). arXiv:1602.03837 [gr-qc]; http://dx.doi.org/10.1103/PhysRevLett.116.061102
  58. 58.
    C.V. Vishveshwara, Stability of the Schwarzschild metric. Phys. Rev. D1, 2870–2879 (1970). http://dx.doi.org/10.1103/PhysRevD.1.2870 ADSGoogle Scholar
  59. 59.
    R.M. Wald, The thermodynamics of black holes. Living Rev. Rel. 4, 6 (2001). arXiv:gr-qc/9912119 [gr-qc]; http://dx.doi.org/10.12942/lrr-2001-6
  60. 60.
    B.F. Whiting, Mode stability of the Kerr black hole. J. Math. Phys. 30, 1301 (1989). http://dx.doi.org/10.1063/1.528308 ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    H. Yang, D.A. Nichols, F. Zhang, A. Zimmerman, Z. Zhang, Y. Chen, Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation. Phys. Rev. D86, 104006 (2012). arXiv:1207.4253 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.86.104006
  62. 62.
    H. Yang, A. Zimmerman, A. Zenginoglu, F. Zhang, E. Berti, Y. Chen, Quasinormal modes of nearly extremal Kerr spacetimes: spectrum bifurcation and power-law ringdown. Phys. Rev. D88(4), 044047 (2013). arXiv:1307.8086 [gr-qc]; http://dx.doi.org/10.1103/PhysRevD.88.044047
  63. 63.
    Y.B. Zel’Dovich, Generation of waves by a rotating body. Sov. J. Exp. Theor. Phys. Lett. 14, 180 (1971)ADSGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Geoffrey Compère
    • 1
  1. 1.Physique théorique mathématiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations