A Feature Filter for EEG Using Cycle-GAN Structure

  • Yue YaoEmail author
  • Jo Plested
  • Tom Gedeon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11307)


The brain-computer interface (BCI) has become one of the most important biomedical research fields and has created many useful applications. As an important component of BCI, electroencephalography (EEG) is in general sensitive to noise and rich in all kinds of information from our brain. In this paper, we introduce a new strategy to filter out unwanted features from EEG signals using GAN-based autoencoders. Filtering out signals relating to one property of the EEG signal while retaining another is similar to the way we can listen to just one voice during a party. This approach has many potential applications including in privacy and security. We use the UCI EEG dataset on alcoholism for our experiments. Our experiment results show that our novel GAN based structure can filter out alcoholism information for 66% of EEG signals with an average of only 6.2% accuracy lost.


Deep learning EEG Brain-Computer interface Image translation Generative adversarial nets 


  1. 1.
    Kumari, P., Vaish, A.: Brainwave based user identification system: a pilot study in robotics environment. Robot. Auton. Syst. 65, 15–23 (2015)CrossRefGoogle Scholar
  2. 2.
    Truong, N.D., Nguyen, A.D., Kuhlmann, L., Bonyadi, M.R., Yang, J., Kavehei, O.: A Generalised Seizure Prediction with Convolutional Neural Networks for Intracranial and Scalp Electroencephalogram Data Analysis. arXiv preprint arXiv:1707.01976 (2017)
  3. 3.
    Thodoroff, P., Pineau, J., Lim, A.: Learning robust features using deep learning for automatic seizure detection. In: Machine Learning for Healthcare Conference, pp. 178–190 (2016)Google Scholar
  4. 4.
    Ebrahimi, F., Mikaeili, M., Estrada, E., Nazeran, H.: Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008. EMBS 2008, pp. 1151–1154. IEEE (2008)Google Scholar
  5. 5.
    Palazzo, S., Spampinato, C., Kavasidis, I., Giordano, D., Shah, M.: Generative adversarial networks conditioned by brain signals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3410–3418 (2017)Google Scholar
  6. 6.
    Yao, Y., Plested, J., Gedeon, T.: Deep Feature Learning and Visualization for EEG Recording Using Autoencoders. Submited to International Conference on Neural Information Processing (ICONIP) 2018 12 (2018)Google Scholar
  7. 7.
    Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2017)
  8. 8.
    Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 (2015)
  9. 9.
    Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)Google Scholar
  10. 10.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
  11. 11.
    Liu, M.-Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)Google Scholar
  12. 12.
    Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv:1701.07875 (2017)
  13. 13.
    Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)
  14. 14.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). Wiley-IEEE Press, Indianapolis, IndianaGoogle Scholar
  15. 15.
    Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)Google Scholar
  16. 16.
    Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. arXiv preprint arXiv:1609.05473 (2016)
  17. 17.
    Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., Wang, J.: Long Text Generation via Adversarial Training with Leaked Information. arXiv preprint arXiv:1709.08624 (2017)
  18. 18.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  19. 19.
    Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: Eegnet: a compact convolutional network for eeg-based brain-computer interfaces. arXiv preprint arXiv:1611.08024 (2016)
  20. 20.
    Li, Y., Dzirasa, K., Carin, L., Carlson, D.E.: Targeting EEG/LFP synchrony with neural nets. In: Advances in Neural Information Processing Systems, pp. 4623–4633 (2017)Google Scholar
  21. 21.
    Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are gans created equal? a large-scale study. arXiv preprint arXiv:1711.10337 (2017)
  22. 22.
    Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Research School of Computer ScienceThe Australian National UniversityCanberraAustralia

Personalised recommendations