3D Large Kernel Anisotropic Network for Brain Tumor Segmentation

  • Dongnan Liu
  • Donghao Zhang
  • Yang Song
  • Fan Zhang
  • Lauren J. O’Donnell
  • Weidong Cai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11307)


Brain tumor segmentation in magnetic resonance images is a key step for brain cancer diagnosis and clinical treatment. Recently, deep convolutional neural network (DNN) based models have become a popular and effective choice due to their learning capability with a large amount of parameters. However, in traditional 3D DNN models, the valid receptive fields are not large enough for global details from the objective and the large amount of parameters are easy to cause high computational cost and model overfitting. In order to address these problems, we propose a 3D large kernel anisotropic network. In our model, the large kernels in the decoders ensure the valid receptive field is large enough and the anisotropic convolutional blocks in the encoders simulate the traditional isotropic ones with fewer parameters. Our proposed model is evaluated on datasets from the MICCAI BRATS 17 challenge and outperforms several popular 3D DNN architectures.


Brain tumor segmentation Magnetic resonance image 3D deep neural network 



This work was supported in part by Australian Research Council (ARC) grants and National Center for Image-Guided Therapy (NCIGT): P41 EB015898.


  1. 1.
    Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. OSDI 16, 265–283 (2016)Google Scholar
  2. 2.
    Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation (2017). arXiv preprint arXiv:1707.03718
  3. 3.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). Scholar
  4. 4.
    Doyle, S., Vasseur, F., Dojat, M., Forbes, F.: Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM. In: Procs. NCI-MICCAI BraTS, pp. 18–22 (2013)Google Scholar
  5. 5.
    Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging (2017). arXiv preprint arXiv:1709.03485
  6. 6.
    Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). Scholar
  8. 8.
    Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)CrossRefGoogle Scholar
  9. 9.
    Kamnitsas, K., et al.: Deepmedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154. Springer, Cham (2016). Scholar
  10. 10.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)Google Scholar
  11. 11.
    Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the SNEMI3D connectomics challenge. In: NIPS (2017)Google Scholar
  12. 12.
    Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T.: On the compactness, efficiency, and representation of 3d convolutional networks: brain parcellation as a pretext task. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 348–360. Springer, Cham (2017). Scholar
  13. 13.
    Liu, D., et al.: Large kernel refine fusion net for neuron membrane segmentation. In: CVPR Workshops, pp. 2212–2220 (2018)Google Scholar
  14. 14.
    Liu, S., Song, Y., Zhang, F., Feng, D., Fulham, M., Cai, W.: Clique identification and propagation for multimodal brain tumor image segmentation. In: Ascoli, G.A., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds.) BIH 2016. LNCS (LNAI), vol. 9919, pp. 285–294. Springer, Cham (2016). Scholar
  15. 15.
    Liu, S., et al.: 3D anisotropic hybrid network: transferring convolutional features from 2D images to 3D anisotropic volumes (2017). arXiv preprint arXiv:1711.08580
  16. 16.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  17. 17.
    Menze, Bjoern H., van Leemput, Koen, Lashkari, Danial, Weber, Marc-André, Ayache, Nicholas, Golland, Polina: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, Tianzi, Navab, Nassir, Pluim, Josien P.W., Viergever, Max A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010). Scholar
  18. 18.
    Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)Google Scholar
  19. 19.
    Ohgaki, H., Kleihues, P.: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol. 64(6), 479–489 (2005)CrossRefGoogle Scholar
  20. 20.
    Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve semantic segmentation by global convolutional network. In: CVPR, pp. 4353–4361 (2017)Google Scholar
  21. 21.
    Prastawa, M., Bullitt, E., Gerig, G.: Synthetic ground truth for validation of brain tumor MRI segmentation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 26–33. Springer, Heidelberg (2005). Scholar
  22. 22.
    Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)CrossRefGoogle Scholar
  23. 23.
    Singh, S.K., et al.: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63(18), 5821–5828 (2003)MathSciNetGoogle Scholar
  24. 24.
    Subbanna, N.K., Precup, D., Collins, D.L., Arbel, T.: Hierarchical probabilistic gabor and MRF segmentation of brain tumours in MRI volumes. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 751–758. Springer, Heidelberg (2013). Scholar
  25. 25.
    Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks (2017). arXiv preprint arXiv:1709.00382
  26. 26.
    Wen, P.Y., Kesari, S.: Malignant gliomas in adults. N. Engl. J. Med. 359(5), 492–507 (2008)CrossRefGoogle Scholar
  27. 27.
    Zhang, D., et al.: Panoptic segmentation with an end-to-end cell R-CNN for pathology image analysis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 237–244. Springer, Cham (2018). Scholar
  28. 28.
    Zhang, D., Song, Y., Liu, S., Feng, D., Wang, Y., Cai, W.: Nuclei instance segmentation with dual contour-enhanced adversarial network. In: ISBI, pp. 409–412. IEEE (2018)Google Scholar
  29. 29.
    Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. In: ICLR (2015)Google Scholar
  30. 30.
    Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dongnan Liu
    • 1
  • Donghao Zhang
    • 1
  • Yang Song
    • 1
  • Fan Zhang
    • 2
  • Lauren J. O’Donnell
    • 2
  • Weidong Cai
    • 1
  1. 1.School of Information TechnologiesUniversity of SydneySydneyAustralia
  2. 2.Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations