Advertisement

A Learning Based Recovery for Damaged Snake-Like Robots

  • Zhuoqun Guan
  • Jianping Huang
  • Zhiyong Jian
  • Linlin liu
  • Long Cheng
  • Kai Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11307)

Abstract

Snake-like robots have been widely studied and developed to exploit their flexible mobility and versatility. However, when encoutering powerful damages, how to recover the functionality is seldom investigated. This paper proposed a trial-and-error learning approach for damage recovery for 3-dimensional snake-like robots. The proposed method can guide snake-like robots to find compensation behavior in the absence of the pre-specified damage models. Our proposed method is evaluated by experiments in real world and various simulations.

Keywords

Snake-like robot Damage recovery 

References

  1. 1.
    Blanke, M., Kinnaert, M., Staroswiecki, M.: Diagnosis and fault-tolerant control, pp. 1379–1384. Springer, Heidelberg (2006).  https://doi.org/10.1007/978-3-662-47943-8. 49(4), 1379–1384CrossRefzbMATHGoogle Scholar
  2. 2.
    Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)CrossRefGoogle Scholar
  3. 3.
    Carlson, J., Murphy, R.R.: How UGVS physically fail in the field. IEEE Trans. Robot. 21(3), 423–437 (2005)CrossRefGoogle Scholar
  4. 4.
    Chatzilygeroudis, K., Vassiliades, V., Mouret, J.B.: Reset-free trial-and-error learning for data-efficient robot damage recovery. Robot. Auton. Syst. 100, 236–250 (2016)CrossRefGoogle Scholar
  5. 5.
    Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503 (2014)CrossRefGoogle Scholar
  6. 6.
    Fuchs, A., Goldner, B., Nolte, I., Schilling, N.: Ground reaction force adaptations to tripedal locomotion in dogs. Vet. J. 201, 307–315 (2014)CrossRefGoogle Scholar
  7. 7.
    Hirose, S., Cave, P., Goulden, C.: Biologically inspired robots: Serpentile locomotors and manipulators, pp. 351–363. Oxford University Press, Oxford (1993)Google Scholar
  8. 8.
    Gray, J.: The mechanism of locomotion in snakes. J. Exp. Biol. 23(23), 101–120 (1946)Google Scholar
  9. 9.
    Katharine, S.: Mars rover spirit (2003–10). Nature 463(7281), 600 (2010)CrossRefGoogle Scholar
  10. 10.
    Kyriakopoulos, K., Migadis, G., Sarrigeorgidis, K.: The ntua snake: design, planar kinematics, and motion planning. J. Robot. Syst. 16(1), 37–72 (1999)CrossRefGoogle Scholar
  11. 11.
    Lipkin, K., Brown, I., Peck, A., Choset, H.: Differentiable and piecewise differentiable gaits for snake robots. In: IEEE/RSJ International Conference on Intelligent Robots & Systems, vol. 8, no. 1, pp. 1864–1869 (2007)Google Scholar
  12. 12.
    Nilsson, M.: Why snake robots need torsion-free joints and how to design them. In: IEEE International Conference on Robotics & Automation, vol. 1, pp. 412–417 (1998)Google Scholar
  13. 13.
    Ma, S.: Analysis of creeping locomotion of a snake-like robot. Auton. Robot. 15(2), 205–224 (2006)MathSciNetGoogle Scholar
  14. 14.
    Paap, K.L., Dehlwisch, M., Klaassen, B.: GMD-Snake: a semi-autonomous snake-like robot. In: Asama, H., Fukuda, T., Arai, T., Endo, I. (eds.) Distributed Autonomous Robotic Systems, vol. 2. Springer, Tokyo (1996).  https://doi.org/10.1007/978-4-431-66942-5_8CrossRefGoogle Scholar
  15. 15.
    Shan, Y., Koren, Y.: Design and motion planning of a mechanical snake. IEEE Trans. Syst. Man Cybern. 23(4), 1091–1100 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zhuoqun Guan
    • 1
  • Jianping Huang
    • 1
  • Zhiyong Jian
    • 1
  • Linlin liu
    • 1
  • Long Cheng
    • 1
  • Kai Huang
    • 1
  1. 1.School of Data and Computer ScienceSun Yat-sen UniversityGuangzhouChina

Personalised recommendations