Advertisement

Prescribed Performance Control of Double-Fed Induction Generator with Uncertainties

  • Yuqi Liu
  • Haojie Li
  • Wenjie Wu
  • Dan Wang
  • Zhouhua Peng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11307)

Abstract

This paper considers the vector control of double-fed induction generator in the presence of uncertainties. An electromagnetic torque controller and a rotor current controller are proposed based on an error transformation technique and a reduced-order extended state observer. Specifically, the error transformation technique is used to achieve the prescribed transient and steady performance. The reduced-order extended state observer is utilized to estimate and compensate for system uncertainties in real time. By using the proposed controllers, the tracking performance of the system is improved. Compared with the full-order extended state observer, the reduced-order extended state observer reduces the adjustment parameters, which renders it easier to implement in practice. The effectiveness of proposed scheme is validated via theoretical analysis and simulations.

Keywords

Double-fed induction generator Extended state observer Prescribed performance Vector control 

References

  1. 1.
    Marques, G.D., Iacchetti, M.F.: Stator frequency regulation in a field-oriented controlled DFIG connected to a dc link. IEEE Trans. Ind. Electron. 61(11), 5930–5939 (2014)CrossRefGoogle Scholar
  2. 2.
    Beltran, M.B.B., Ahmed-Ali, T.: Second-order sliding mode control of a doubly fed induction generator driven wind turbine. IEEE Trans. Energy Convers. 27(2), 261–269 (2012)CrossRefGoogle Scholar
  3. 3.
    Meng, W., Yang, Q., Sun, Y.: Guaranteed performance control of DFIG variable-speed wind turbines. IEEE Trans. Ind. Electron. 24(6), 2215–2223 (2016)Google Scholar
  4. 4.
    She, Y., She, X., Baran, M.E.: Universal tracking control of wind conversion system for purpose of maximum power acquisition under hierarchical control structure. IEEE Trans. Energy Convers. 26(3), 766–775 (2011)CrossRefGoogle Scholar
  5. 5.
    Roshandel, E., Gheasaryan, S.M., Mohamadi, M.: A control strategy for DFIG wind turbine using SLS-TLBO and fuzzy logic. In: IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), pp. 0108–0113 (2017)Google Scholar
  6. 6.
    Beltran, B., Ahmed-Ali, T., Benbouzid, M.E.H.: Sliding mode power control of variable-speed wind energy conversion systems. IEEE Trans. Energy Convers. 23(2), 551–558 (2008)CrossRefGoogle Scholar
  7. 7.
    Zhao, H., Wu, Q., Rasmussen, C.N., Blanke, M.: \({L}_1\) adaptive speed control of a small wind energy conversion system for maximum power point tracking. IEEE Trans. Energy Convers. 29(3), 576–584 (2014)CrossRefGoogle Scholar
  8. 8.
    Mansour, S., Reza, S., Nooshad, Y.: An optimal fuzzy PI controller to capture the maximum power for variable-speed wind turbines. Neural Comput. Appl. 23(5), 359–1368 (2013)Google Scholar
  9. 9.
    Boukhezzar, B., Siguerdidjane, H., Hand, M.M.: Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization. J. Sol. Energy Eng. 128(4), 516–530 (2006)CrossRefGoogle Scholar
  10. 10.
    Boukhezzar, B., Siguerdidjane, H.: Nonlinear control of a variable-speed wind turbine using a two-mass model. IEEE Trans. Energy Convers. 26(1), 149–162 (2011)CrossRefGoogle Scholar
  11. 11.
    Beltran, B., AhmedAli, T., Benbouzid, M.E.H.: Sliding mode power control of variable-speed wind energy conversion systems. IEEE Trans. Energy Convers. 23(2), 551–558 (2008)CrossRefGoogle Scholar
  12. 12.
    Beltran, B., Ahmed-Ali, T., Benbouzid, M.E.H.: High-order sliding-mode control of variable-speed wind turbines. IEEE Trans. Ind. Electron. 56(9), 3314–3321 (2009)CrossRefGoogle Scholar
  13. 13.
    Su, X., Wang, H.: Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO. ISA Trans. 57(4), 10–22 (2015)Google Scholar
  14. 14.
    Miroslav, K., Ioannis, K., Petar, K.: Nonlinear adaptive control design. Lect. Notes Control. Inf. Sci. 5(2), 4475–4480 (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yuqi Liu
    • 1
  • Haojie Li
    • 1
  • Wenjie Wu
    • 1
  • Dan Wang
    • 1
  • Zhouhua Peng
    • 1
  1. 1.School of Marine Electrical EngineeringDalian Maritime UniversityDalianChina

Personalised recommendations