Advertisement

On the Subaquatic Light Fields in Lakes of Southern Chile and Their Photosynthetic Potential

  • Lien Rodríguez LópezEmail author
  • Rolando Cárdenas
  • Oscar Parra
  • Roberto Urrutia
  • Lisdelys González
  • Rebeca Martínez
Conference paper

Abstract

The district of Chileans Araucanian Lakes is a group of lakes of glacial origin that are located between 39° and 42°, Lat. S and 71° and 72° Long. W that are characterized by presenting oligotrophic conditions. The last of the chain of lakes of Valdivia Basin River is the Riñihue, a temperate monomític lake, reason why its study is of great importance, since it reflects any disturbance in the chain. It is relevant to have precise spectra of the photosynthetically active and ultraviolet radiation of the location area to calculate the photosynthetic potential in these lakes. In this paper, an assessment is made about the applicability of the COART radiative transport model in freshwater aquatic systems.

Keywords

Radiative Phytoplankton Aquatic 

References

  1. 1.
    Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371.  https://doi.org/10.1046/j.1466-822x.2003.00042.xCrossRefGoogle Scholar
  2. 2.
    Rodríguez-lópez L, Cárdenas R, Parra O, Urrutia R, González L, Martínez R, De Concepción U (2017) II CONFERENCIA INTERNACIONAL DE BIOGEOCIENCIAS Sobre la aplicabilidad del modelo de transporte radiativo COART a sistemas acuáticos continentales On the applicability of radiative transfer model COART to continental aquatic systems, 1–9Google Scholar
  3. 3.
    Agustí S (2007) Aumento de la radiación ultravioleta: Impacto sobre los océanos polares, Impacto Del Calentamiento Glob. Sobre Los Ecosistemas Polares 25–46Google Scholar
  4. 4.
    Agustí S, Llabrés M, Carreja B, Fernández M, Duarte CM (2015) Contrasting sensitivity of marine biota to UV-B radiation between southern and northern hemispheres. Estuaries Coasts. 38:1126–1133.  https://doi.org/10.1007/s12237-014-9790-9CrossRefGoogle Scholar
  5. 5.
    Rivas M, Rojas E, Madronich S (2008) Aumento del Índice Solar Ultravioleta con la Altura Solar Ultraviolet Index Increase With Altitude, Ingeniare. Rev Chil Ing 16:383–388.  https://doi.org/10.4067/s0718-33052008000200013
  6. 6.
    Cornejo L, Martín-Pomares L, Alarcon D, Blanco J, Polo J (2017) A through analysis of solar irradiation measurements in the region of Arica Parinacota, Chile. Renew Energy 112:197–208.  https://doi.org/10.1016/j.renene.2017.04.012CrossRefGoogle Scholar
  7. 7.
    Molina A, Falvey M, Rondanelli R (2017) A solar radiation database for Chile. Sci Rep 7:1–11.  https://doi.org/10.1038/s41598-017-13761-x
  8. 8.
    Conac, INFORME DE RADIACIÓN UV Y CÁNCER DE PIEL EN CHILE 2016, Santiago de Chile, 2016. http://ambiente.usach.cl/uv
  9. 9.
    Campos H, Bucarey Bahamondes elys, Arenas jn (1974) Estudios Limnológicos del lago Rinihue y rio Valdivia (Chile).Google Scholar
  10. 10.
    Parra O y Hugo Campos LZ (1987) Wladimir Steffen, Gloria Aguero, Limnology of Lake Riñihue, 239–357Google Scholar
  11. 11.
    Woelfl S, Villalobos L, Parra Ó (2003) Trophic parameters and method validation in Lake Riñihue (North Patagonia: Chile) from 1978, through 1997. Rev Chil Hist Nat 76:459–474.  https://doi.org/10.4067/S0716-078X2003000300010CrossRefGoogle Scholar
  12. 12.
    Imberger J, Javam A, Campos H, Hamilton DP, Villalobos L (2001) A modelling assessment of potential for eutrophication of Riñihue Lake, CHILE, 101–125Google Scholar
  13. 13.
    Rodríguez L, Parra O, Cárdenas R, Urrutia R, González L, Martínez R (2017) On the applicability of radiative transfer model COART to continental aquatic systems. Editorial Samuel Feijoo (Indexed Scielo)Google Scholar
  14. 14.
    Rodríguez L, Cárdenas R, Ávila-Alonso D (2014) On the photosynthetic potential in the open oceans. Rev Cuba Fis 31:15–17Google Scholar
  15. 15.
    Avila-Alonso D, Cardenas R, Rodriguez L, Alvarez-Salgueiro J (2016) Phytoplankton photosynthetic potential in coastal zones around the world. Rev Cuba Fis 33:62–64Google Scholar
  16. 16.
    Beamud SG, Baffico G, Reid B, Torres R, Gonzalez-Polo M, Pedrozo F, Diaz M (2016) Photosynthetic performance associated with phosphorus availability in mats of Didymosphenia geminata (Bacillariophyceae) from Patagonia (Argentina and Chile). Phycologia 55:118–125.  https://doi.org/10.2216/15-83.1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lien Rodríguez López
    • 1
  • Rolando Cárdenas
    • 2
  • Oscar Parra
    • 1
  • Roberto Urrutia
    • 1
  • Lisdelys González
    • 3
  • Rebeca Martínez
    • 1
  1. 1.Environmental Sciences Center (EULA)University of ConcepciónConcepciónChile
  2. 2.Planetary Science LaboratoryUniversidad Central “Marta Abreu” de Las VillasSanta ClaraCuba
  3. 3.Faculty of EngineeringUniversity of ConcepciónConcepciónChile

Personalised recommendations