Advertisement

A Lightweight Cloud Execution Stack for Neural Network Simulation

  • Benjamin Nussbaum
  • Erich Schikuta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11306)

Abstract

This paper presents an execution stack for neural network simulation using Cloud container orchestration and microservices. User (or other systems) can employ it by simple RESTful service calls. This service oriented approach allows easy and user-friendly importing, training and evaluating of arbitrary neural network models. This work is influenced by N2Sky, a framework for the exchange of neural network specific knowledge and is based on ViNNSL, the Vienna Neural Network Specification Language, a domain specific neural network modelling language. The presented execution stack runs on many common cloud platforms. It is scalable and each component is extensible and interchangeable.

Keywords

Neural network simulation Neural network modelling Cloud computing Container technology Microservices Service orientation 

References

  1. 1.
    Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)Google Scholar
  2. 2.
    Baier, J.: Getting Started with Kubernetes. Packt Publishing (2015)Google Scholar
  3. 3.
    Bashari Rad, B., Bhatti, H., Ahmadi, M.: An introduction to docker and analysis of its performance. IJCSNS Int. J. Comput. Sci. Netw. Secur. 17(3), 228–235 (2017)Google Scholar
  4. 4.
    Beran, P.P., Vinek, E., Schikuta, E., Weishaupl, T.: ViNNSL - the Vienna Neural Network Specification Language. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1872–1879, June 2008Google Scholar
  5. 5.
    Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
  6. 6.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Hum. Genet. 7(2), 179–188 (1936)Google Scholar
  7. 7.
    Huqqani, A.A., Li, X., Beran, P.P., Schikuta, E.: N2Cloud: cloud based neural network simulation application. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–5. IEEE (2010)Google Scholar
  8. 8.
    Joy, A.M.: Performance comparison between linux containers and virtual machines. In: 2015 International Conference on Advances in Computer Engineering and Applications, pp. 342–346, March 2015Google Scholar
  9. 9.
    Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: SOM PAK: the self-organizing map program package. Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science (1996)Google Scholar
  10. 10.
    Leighton, R.R., Wieland, A.: The Aspirin/MIGRAINES software tools, user’s manual. Technical report MP-91W00050 (1991)Google Scholar
  11. 11.
    Prieto, A., et al.: Neural networks: an overview of early research, current frameworks and new challenges. Neurocomputing 214, 242–268 (2016)CrossRefGoogle Scholar
  12. 12.
    Schikuta, E., Fuerle, T., Wanek, H.: ViPIOS: the vienna parallel input/output system. In: Pritchard, D., Reeve, J. (eds.) Euro-Par 1998. LNCS, vol. 1470, pp. 953–958. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0057953CrossRefGoogle Scholar
  13. 13.
    Schikuta, E., Huqqani, A., Kopica, T.: Semantic extensions to the Vienna neural network specification language. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, July 2015Google Scholar
  14. 14.
    Schikuta, E., Mann, E.: N2Sky - neural networks as services in the clouds. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, August 2013Google Scholar
  15. 15.
    Schikuta, E., Weishaupl, T.: N2Grid: neural networks in the grid. In: 2004 Proceedings of IEEE International Joint Conference on Neural Networks, vol. 2, pp. 1409–1414. IEEE (2004)Google Scholar
  16. 16.
    Zell, A., et al.: SNNS (Stuttgart Neural Network Simulator). In: Skrzypek, J. (eds.) Neural Network Simulation Environments. The Kluwer International Series in Engineering and Computer Science, vol. 254, pp. 165–186. Springer, Boston (1994).  https://doi.org/10.1007/978-1-4615-2736-7_9Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of ViennaViennaAustria

Personalised recommendations