Deep Multi-task Learning for Air Quality Prediction

  • Bin Wang
  • Zheng Yan
  • Jie Lu
  • Guangquan Zhang
  • Tianrui Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11305)


Predicting the concentration of air pollution particles has been an important task of urban computing. Accurately measuring and estimating makes the citizen and governments can behave with suitable decisions. In order to predict the concentration of several air pollutants at multiple monitoring stations throughout the city region, we proposed a novel deep multi-task learning framework based on residual Gated Recurrent Unit (GRU). The experimental results on the real world data from London region substantiate that the proposed deep model has manifest superiority than shallow models and outperforms 9 baselines.


Deep learning Recurrent neural networks Neural networks Air quality prediction Urban computing 



This work was supported by the Natural Science Foundation of China (No. 61773324), the Fundamental Research Funds for the Central Universities (No. 2682015QM02) and the Australian Research Council (No. DP150101645).


  1. 1.
    Akimoto, H.: Global air quality and pollution. Science 302(5651), 1716–1719 (2003)CrossRefGoogle Scholar
  2. 2.
    Ghaderi, A., Sanandaji, B.M., Ghaderi, F.: Deep forecast: deep learning-based spatio-temporal forecasting. arXiv preprint arXiv:1707.08110 (2017)
  3. 3.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European Conference on Computer Vision, pp. 630–645 (2016)CrossRefGoogle Scholar
  4. 4.
    Kampa, M., Castanas, E.: Human health effects of air pollution. Environ. Pollut. 151(2), 362–367 (2008)CrossRefGoogle Scholar
  5. 5.
    Ke, J., Zheng, H., Yang, H., Chen, X.M.: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transp. Res. Part C: Emerg. Technol. 85, 591–608 (2017)CrossRefGoogle Scholar
  6. 6.
    Kök, I., Şimşek, M.U., Özdemir, S.: A deep learning model for air quality prediction in smart cities. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1983–1990, December 2017Google Scholar
  7. 7.
    Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 23(22), 22408–22417 (2016)CrossRefGoogle Scholar
  8. 8.
    Liang, Y., Ke, S., Zhang, J., Yi, X., Zheng, Y.: GeoMAN. In: International Joint Conference on Artificial Intelligence (IJCAI-18) (2018)Google Scholar
  9. 9.
    Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)CrossRefGoogle Scholar
  10. 10.
    Wang, B., Yin, P., Bertozzi, A.L., Brantingham, P.J., Osher, S.J., Xin, J.: Deep learning for real-time crime forecasting and its ternarization. arXiv preprint arXiv:1711.08833 (2017)
  11. 11.
    Wu, Y., Tan, H.: Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022 (2016)
  12. 12.
    Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)Google Scholar
  13. 13.
    Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand prediction. arXiv preprint arXiv:1802.08714 (2018)
  14. 14.
    Yi, X., Zhang, J., Wang, Z., Li, T., Zheng, Y.: Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2018)Google Scholar
  15. 15.
    Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1655–1661 (2017)Google Scholar
  16. 16.
    Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for spatio-temporal data. In: Proceedings of the International Conference on Advances in Geographic Information Systems, p. 92 (2016)Google Scholar
  17. 17.
    Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A.: Real-time air quality forecasting, Part I: history, techniques, and current status. Atmos. Environ. 60, 632–655 (2012)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A.: Real-time air quality forecasting, Part II: state of the science, current research needs, and future prospects. Atmos. Environ. 60, 656–676 (2012)CrossRefGoogle Scholar
  19. 19.
    Zheng, Y., Liu, F., Hsieh, H.P.: U-Air: when urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 1436–1444. ACM (2013)Google Scholar
  20. 20.
    Zheng, Y., et al.: Forecasting fine-grained air quality based on big data. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2015, pp. 2267–2276. ACM (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bin Wang
    • 1
    • 2
  • Zheng Yan
    • 2
  • Jie Lu
    • 2
  • Guangquan Zhang
    • 2
  • Tianrui Li
    • 1
  1. 1.School of Information Science and TechnologySouthwest Jiaotong UniversityChengduChina
  2. 2.Faculty of Engineering and Information TechnologyUniversity of Technology, SydneySydneyAustralia

Personalised recommendations