Advertisement

Uplift Prediction with Dependent Feature Representation in Imbalanced Treatment and Control Conditions

  • Artem BetleiEmail author
  • Eustache Diemert
  • Massih-Reza Amini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11305)

Abstract

Uplift prediction concerns the causal impact of a treatment over individuals and it has attracted a lot of attention in the machine learning community these past years. In this paper, we consider a typical situation where the learner has access to an imbalanced treatment and control data collection affecting the performance of the existing approaches. Inspired from transfer and multi-task learning paradigms, our approach overcomes this problem by sharing the feature representation of observations. Furthermore, we provide a unified framework for the existing evaluation metrics and discuss their merits. Our experimental results, over a large-scale collection show the benefits of the proposed approaches.

Keywords

Uplift prediction Causal inference Digital advertising Supervised learning 

References

  1. 1.
    Chapelle, O., Manavoglu, E., Rosales, R.: Simple and scalable response prediction for display advertising. ACM Trans. Intell. Syst. Technol. 5(4), 61:1–61:34 (2014)CrossRefGoogle Scholar
  2. 2.
    Hillstrom, K.: The MineThatData e-mail analytics and data mining challenge (2008)Google Scholar
  3. 3.
    Jaskowski, M., Jaroszewicz, S.: Uplift modeling for clinical trial data. In: ICML Workshop on Clinical Data Analysis (2012)Google Scholar
  4. 4.
    Kuusisto, F., Costa, V.S., Nassif, H., Burnside, E., Page, D., Shavlik, J.: Support vector machines for differential prediction. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 50–65. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44851-9_4CrossRefGoogle Scholar
  5. 5.
    Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, New York (2000)zbMATHGoogle Scholar
  6. 6.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Radcliffe, N.J.: Using control groups to target on predicted lift: building and assessing uplift model. Direct Mark. Anal. J. 3, 14–21 (2007)Google Scholar
  8. 8.
    Radcliffe, N.J., Surry, P.D.: Real-world uplift modelling with significance-based uplift trees (2011)Google Scholar
  9. 9.
    Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rzepakowski, P., Jaroszewicz, S.: Decision trees for uplift modeling with single and multiple treatments. Knowl. Inf. Syst. 32, 303–327 (2012)CrossRefGoogle Scholar
  11. 11.
    Jaroszewicz, S.S.M., Rzepakowski, P.: Ensemble methods for uplift modeling. Data Min. Knowl. Discov. 29(6), 1531–1559 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tufféry, S.: Data Mining and Statistics for Decision Making (2011)CrossRefGoogle Scholar
  13. 13.
    Zaniewicz, L., Jaroszewicz, S.: Support vector machines for uplift modeling. In: Proceedings of the 2013 IEEE 13th International Conference on Data Mining Workshops, ICDMW 2013, Washington, DC, USA, pp. 131–138 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Artem Betlei
    • 1
    • 2
    Email author
  • Eustache Diemert
    • 1
  • Massih-Reza Amini
    • 2
  1. 1.Criteo ResearchGrenobleFrance
  2. 2.UGA/CNRS LIGGrenobleFrance

Personalised recommendations