Prediction of Molecular Packing Motifs in Organic Crystals by Neural Graph Fingerprints

  • Daiki Ito
  • Raku Shirasawa
  • Shinnosuke Hattori
  • Shigetaka Tomiya
  • Gouhei Tanaka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11305)


Material search is a significant step for discovery of novel materials with desirable characteristics, which normally requires exhaustive experimental and computational efforts. For a more efficient material search, neural networks and other machine learning techniques have recently been applied to materials science in expectation of their potentials in data-driven estimation and prediction. In this study, we aim to predict molecular packing motifs of organic crystals from descriptors of single molecules using machine learning techniques. First, we identify the molecular packing motifs for molecular crystals based on geometric conditions. Then, we represent the information on single molecules using the neural graph fingerprints which are trainable descriptors unlike conventional untrainable ones. In numerical experiments, we show that the molecular packing motifs are better predicted by using the neural graph fingerprints than the other tested untrainable descriptors. Moreover, we demonstrate that the key fragment of molecules in crystal motif formation can be found from the trained neural graph fingerprints. Our approach is promising for crystal structure prediction.


Crystal structure prediction Machine learning Supervised learning Neural graph fingerprints 


  1. 1.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  2. 2.
    Rajan, K.: Materials informatics. Mater. Today 8(10), 38–45 (2005)CrossRefGoogle Scholar
  3. 3.
    Ward, L., Wolverton, C.: Atomistic calculations and materials informatics: a review. Curr. Opin. Solid State Mater. Sci. 21(3), 167–176 (2017)CrossRefGoogle Scholar
  4. 4.
    Rupp, M., Tkatchenko, A., Müller, K.R., Von Lilienfeld, O.A.: Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108(5), 058301 (2012)CrossRefGoogle Scholar
  5. 5.
    Pilania, G., Wang, C., Jiang, X., Rajasekaran, S., Ramprasad, R.: Accelerating materials property predictions using machine learning. Sci. Rep. 3, 2810 (2013)CrossRefGoogle Scholar
  6. 6.
    Montavon, G., et al.: Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15(9), 095003 (2013)CrossRefGoogle Scholar
  7. 7.
    Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Big data meets quantum chemistry approximations: the \(\delta \)-machine learning approach. J. Chem. Theor. Comput. 11(5), 2087–2096 (2015)CrossRefGoogle Scholar
  8. 8.
    Campbell, J.E., Yang, J., Day, G.M.: Predicted energy-structure-function maps for the evaluation of small molecule organic semiconductors. J. Mater. Chem. C 5(30), 7574–7584 (2017)CrossRefGoogle Scholar
  9. 9.
    Day, G.M., Gorbitz, C.H.: Introduction to the special issue on crystal structure prediction. Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 72, 435–436 (2016)CrossRefGoogle Scholar
  10. 10.
    Reilly, A.M., et al.: Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 72(4), 439–459 (2016)CrossRefGoogle Scholar
  11. 11.
    Desiraju, G.R., Gavezzotti, A.: Crystal structures of polynuclear aromatic hydrocarbons. Classification, rationalization and prediction from molecular structure. Acta Crystallogr. Sect. B: Struct. Sci. 45(5), 473–482 (1989)CrossRefGoogle Scholar
  12. 12.
    Groom, C.R., Bruno, I.J., Lightfoot, M.P., Ward, S.C.: The cambridge structural database. Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 72(2), 171–179 (2016)CrossRefGoogle Scholar
  13. 13.
    Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Advances in Neural Information Processing Systems, pp. 2224–2232 (2015)Google Scholar
  14. 14.
    Bender, A., Glen, R.C.: Molecular similarity: a key technique in molecular informatics. Org. Biomol. Chem. 2(22), 3204–3218 (2004)CrossRefGoogle Scholar
  15. 15.
    Glen, R.C., Bender, A., Arnby, C.H., Carlsson, L., Boyer, S., Smith, J.: Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to adme. IDrugs 9(3), 199 (2006)Google Scholar
  16. 16.
    Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50(5), 742–754 (2010)CrossRefGoogle Scholar
  17. 17.
    Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. arXiv preprint arXiv:1704.01212 (2017)
  18. 18.
    Mingos, D.M.P., Rohl, A.L.: Size and shape characteristics of inorganic molecules and ions and their relevance to molecular packing problems. J. Chem. Soc. Dalton Trans. 12, 3419–3425 (1991)CrossRefGoogle Scholar
  19. 19.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  20. 20.
    Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Daiki Ito
    • 1
  • Raku Shirasawa
    • 2
  • Shinnosuke Hattori
    • 2
  • Shigetaka Tomiya
    • 2
  • Gouhei Tanaka
    • 1
  1. 1.Department of Electrical Engineering and Information SystemsThe University of TokyoTokyoJapan
  2. 2.Materials Analysis Center, Advanced Technology Research DivisionSony CorporationAtsugiJapan

Personalised recommendations