Advertisement

Adaptive Fuzzy Clustering Algorithm with Local Information and Markov Random Field for Image Segmentation

  • Jialiang Hu
  • Ying Wen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11304)

Abstract

Fuzzy c-means (FCM) clustering as one of the clustering method is widely used in image segmentation field, but some methods based on FCM are unable to obtain satisfactory performance for image segmentation under intense noise condition. This paper presents a novel local spatial information based fuzzy c-means clustering and Markov random field method for image segmentation. In the method, a new dissimilarity function is proposed by using the prior relationship degree and local neighbor distances, which enhances its resistance to noise. And a novel prior probability approximation is considered with spatial Euclidean distance and the difference of the mean color level between the center pixel and its neighborhoods. Experiments over synthetic images, real-world images and brain MR images indicate that the proposed method obtains better segmentation performance, compared to the FCM extended methods.

Keywords

Image segmentation Fuzzy c-means clustering Markov random field Local information 

References

  1. 1.
    Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)CrossRefGoogle Scholar
  2. 2.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, New York (2013)zbMATHGoogle Scholar
  3. 3.
    Chatzis, S.P., Varvarigou, T.A.: A fuzzy clustering approach toward hidden markov random field models for enhanced spatially constrained image segmentation. IEEE Trans. Fuzzy Syst. 16(5), 1351–1361 (2008)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Zhang, J., Wang, S., Zheng, Y.: Brain magnetic resonance image segmentation based on an adapted non-local fuzzy c-means method. IET Comput. Vis. 6(6), 610–625 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Choy, S.K., Lam, S.Y., Yu, K.W., Lee, W.Y., Leung, K.T.: Fuzzy model-based clustering and its application in image segmentation. Patt. Recogn. 68, 141–157 (2017)CrossRefGoogle Scholar
  6. 6.
    Fazendeiro, P., de Oliveira, J.V.: Observer-biased fuzzy clustering. IEEE Trans. Fuzzy Syst. 23(1), 85–97 (2015)CrossRefGoogle Scholar
  7. 7.
    Gharieb, R., Gendy, G., Abdelfattah, A., Selim, H.: Adaptive local data and membership based KL divergence incorporating c-means algorithm for fuzzy image segmentation. Appl. Soft Comput. 59, 143–152 (2017)CrossRefGoogle Scholar
  8. 8.
    Gong, M., Liang, Y., Shi, J., Ma, W., Ma, J.: Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573–584 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gong, M., Zhou, Z., Ma, J.: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 21(4), 2141–2151 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guo, F.F., Wang, X.X., Shen, J.: Adaptive fuzzy c-means algorithm based on local noise detecting for image segmentation. IET Image Process. 10(4), 272–279 (2016)CrossRefGoogle Scholar
  11. 11.
    Havens, T.C., Bezdek, J.C., Leckie, C., Hall, L.O., Palaniswami, M.: Fuzzy c-means algorithms for very large data. IEEE Trans. Fuzzy Syst. 20(6), 1130–1146 (2012)CrossRefGoogle Scholar
  12. 12.
    Hosotani, F., Inuzuka, Y., Hasegawa, M., Hirobayashi, S., Misawa, T.: Image denoising with edge-preserving and segmentation based on mask NHA. IEEE Trans. Image Process. 24(12), 6025–6033 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Huang, H.C., Chuang, Y.Y., Chen, C.S.: Multiple kernel fuzzy clustering. IEEE Trans. Fuzzy Syst. 20(1), 120–134 (2012)CrossRefGoogle Scholar
  14. 14.
    Ji, Z, Sun, Q.: A fuzzy clustering with bounded spatial probability for image segmentation. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2017)Google Scholar
  15. 15.
    Krinidis, S., Chatzis, V.: A robust fuzzy local information c-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, F., Qin, J.: Robust fuzzy local information and LP-norm distance-based image segmentation method. IET Image Process. 11(4), 217–226 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, X., Cui, G., Dong, Y.: Graph regularized non-negative low-rank matrix factorization for image clustering. IEEE Trans. Cybern. 47, 3840–3853 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liu, G., Zhang, Y., Wang, A.: Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Trans. Image Process. 24(11), 3990–4000 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mei, J.P., Chen, L.: LinkFCM: relation integrated fuzzy c-means. Patt. Recogn. 46(1), 272–283 (2013)CrossRefGoogle Scholar
  20. 20.
    Nongmeikapam, K., Kumar, W., Singh, A.D.: A fast and automatically adjustable GRBF kernel based fuzzy c-means for cluster-wise coloured feature extraction and segmentation of MR images. IET Image Process. (2017)Google Scholar
  21. 21.
    Ren, Y., Tang, H., Wei, H.: A markov random field model for image segmentation based on gestalt laws. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7064, pp. 582–591. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24965-5_66CrossRefGoogle Scholar
  22. 22.
    Tran, D.C., Wu, Z., Tran, V.H.: Fast generalized fuzzy c-means using particle swarm optimization for image segmentation. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8835, pp. 263–270. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12640-1_32CrossRefGoogle Scholar
  23. 23.
    Wu, C.H., Ouyang, C.S., Chen, L.W., Lu, L.W.: A new fuzzy clustering validity index with a median factor for centroid-based clustering. IEEE Trans. Fuzzy Syst. 23(3), 701–718 (2015)CrossRefGoogle Scholar
  24. 24.
    Zaixin, Z., Lizhi, C., Guangquan, C.: Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation. IET Image Process. 8(3), 150–161 (2013)CrossRefGoogle Scholar
  25. 25.
    Zhang, H., Wu, Q.M.J., Zheng, Y., Nguyen, T.M., Wang, D.: Effective fuzzy clustering algorithm with Bayesian model and mean template for image segmentation. IET Image Process. 8(10), 571–581 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Multidimensional Information Processing, Department of Computer Science and TechnologyEast China Normal UniversityShanghaiChina

Personalised recommendations