Advertisement

Tracking Dynamics in Concurrent Digital Twins

  • Michael Borth
  • Emile van GerwenEmail author
Conference paper

Abstract

The availability of machine-generated data for the management of complex systems enables run-time technologies for diagnosis, predictive maintenance, process control, etc. that find their apex in digital twins. Such model-based replica of cyber-physical assets represent system elements and their behavior within their environment, which is often dynamic. These dynamics of a system’s environment can render the underlying model unfit w.r.t. the changing reality and thus cripple the whole approach. We provide the means to detect such a transgression of the operational space of digital twins and similar technologies using a novel combination of probability-of-findings calculations with established process control methods and localize necessary updates to ensure efficient model maintenance.

References

  1. 1.
    Monash, C.: Examples and Definition of Machine-Generated Data. Monash Research Publication (2010). www.dbms2.com/2010/12/30/examples-and-definition-of-machine-generated-data. Accessed Apr 2018
  2. 2.
    Laney, D., Jain, A.: 100 Data and Analytics Predictions Through 2021. Gartner Report G00332376 (2017)Google Scholar
  3. 3.
    Gartner Press Release: Gartner Identifies the Top 10 Strategic Technology Trends for 2017. Gartner (2016). www.gartner.com/newsroom/id/3482617. Accessed Apr 2018
  4. 4.
    Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Transdisciplinary Perspectives on Complex Systems, pp. 85–114. Springer International Publishing (2016)Google Scholar
  5. 5.
    Oracle: Digital twins for IoT applications. Oracle White Paper (2017). www.oracle.com/us/solutions/internetofthings/digital-twins-for-iot-apps-wp-3491953.pdf. Accessed Apr 2018
  6. 6.
    Pearl, J.: Causality. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  7. 7.
    Borth, M.: Probabilistic system summaries for behavior architecting. In: Proceedings of the Complex Systems Design and Management 2014 CEUR Workshop, pp. 71–82 (2014)Google Scholar
  8. 8.
    Christensen, J.J., Andersson, C., Gutt, S.: Remote condition monitoring of Vestas turbines. In: Proceedings European Wind Energy Conference, pp. 1–10 (2009)Google Scholar
  9. 9.
    Gupta, S., Starr, M.: Production and Operations Management Systems. CRC Press, Boca Raton (2014)Google Scholar
  10. 10.
    Schwab, K.: The Fourth Industrial Revolution. Portfolio Penguin, London (2017)Google Scholar
  11. 11.
    Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, New York (2001)CrossRefGoogle Scholar
  12. 12.
    Jensen, F.V., Aldenryd, S.H., Jensen, K.B.: Sensitivity analysis in Bayesian networks. In: Carbonell, J.G., et al. (eds.) Symbolic and Quantitative Approaches to Reasoning and Uncertainty. Springer Lecture Notes in CS, vol. 946, pp. 243–250 (1995)Google Scholar
  13. 13.
    Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Geiger, D., Shenoy, P.P. (eds.) Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI 1997), pp. 302–313. Morgan Kaufmann Publishers Inc. (1997)Google Scholar
  14. 14.
    Laskey, K.B., Mahoney, S.M.: Network fragments: representing knowledge for constructing probabilistic models. In: Geiger, D., Shenoy, P.P. (eds.) Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI 1997), pp. 334–341. Morgan Kaufmann Publishers Inc. (1997)Google Scholar
  15. 15.
    Borth, M., von Hasseln, H.: Systematic generation of Bayesian networks from systems specifications. In: Musen, M.A., Neumann, B., Studer, R. (eds.) Intelligent Information Processing, pp. 155–166. Kluver (2002)Google Scholar
  16. 16.
    Western Electric Rules: From Wikipedia. en.wikipedia.org/wiki/Western_Electric_rules. Accessed May 2018
  17. 17.
    Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, H.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46, 44 (2014)CrossRefGoogle Scholar
  18. 18.
    Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Process. 215–249 (2014)CrossRefGoogle Scholar
  19. 19.
    Borth, M., van Gerwen, E.: Data-driven aspects of engineering. In: IEEE SoSE 2018, Paris (2018, accepted)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ESIEindhovenThe Netherlands

Personalised recommendations