Advertisement

Semi-supervised Multi-label Dimensionality Reduction via Low Rank Representation

  • Yezi Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11303)

Abstract

Multi-label dimensionality reduction is an appealing and challenging task in data mining and machine learning. Previous works on multi-label dimensionality reduction mainly conduct in an unsupervised or supervised way, and ignore abundant unlabeled samples. In addition, most of them emphasize on using pairwise correlations between samples, therefore, unable to utilize the high-order sample information to improve the performance. To address these challenges, we propose an approach called Semi-supervised Multi-label Dimensionality Reduction via Low Rank Representation (SMLD-LRR). SMLD-LRR first utilizes the low rank representation in the feature space of samples to calculate the low rank constrained coefficient matrix, then it adapts the coefficient matrix to capture the high-order structure of samples. Next, it uses low rank representation in the label space of labeled samples to explore the global correlations of labels. After that, SMLD-LRR further employs the learned high-order structure of samples to enforce the consistency between samples in the original space and the corresponding samples in the projected subspace by maximizing the dependence between them. Finally, these two high-order correlations and the dependence term are incorporated into the multi-label linear discriminant analysis for dimensionality reduction. Extensive experimental results on four multi-label datasets demonstrate that SMLD-LRR achieves better performance than other competitive methods across various evaluation criteria; it also can effectively exploit high-order label correlations to preserve sample structure in the projected subspace.

Keywords

Dimensionality reduction Multi-label Linear Discriminant Analysis Semi-supervised learning Low Rank Representation 

References

  1. 1.
    Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)CrossRefGoogle Scholar
  2. 2.
    Wu, X.Z., Zhou, Z.H.: A unified view of multi-label performance measures. In: ICML, pp. 3780–3788. IMIS, Sydney (2017)Google Scholar
  3. 3.
    Guo, B., Hou, C., Nie, F., Yi, D.: Semi-supervised multi-label dimensionality reduction. In: IEEE ICDM, pp. 919–924. IEEE, Barcelona (2016)Google Scholar
  4. 4.
    Nie, F., Xu, D., Li, X., Xiang, S.: Semisupervised dimensionality reduction and classification through virtual label regression. SMC Man Cybern. Part B (Cybern.) 41(3), 675–685 (2011)CrossRefGoogle Scholar
  5. 5.
    Jolliffe, I.: Principal Component Analysis. In: International Encyclopedia of Statistical Science, pp. 1094–1096. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  8. 8.
    Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  9. 9.
    Hotelling, H.: Relations between two sets of variates. Biometrika 28(3–4), 321–377 (1936)CrossRefGoogle Scholar
  10. 10.
    Ji, S., Tang, L., Yu, S., Ye, J.: A shared-subspace learning framework for multi-label classification. TKDD 4(2), 8 (2010)CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., Zhou, Z.: Multilabel dimensionality reduction via dependence maximization. TKDD 4(3), 14 (2010)CrossRefGoogle Scholar
  12. 12.
    Zhang, Z., Chow, T.W.: Robust linearly optimized discriminant analysis. Neurocomputing 79, 140–157 (2012)CrossRefGoogle Scholar
  13. 13.
    Gretton, A., Bousquet, O., Smola, A., Schölkopf, B.: Measuring statistical dependence with Hilbert-Schmidt norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 63–77. Springer, Heidelberg (2005).  https://doi.org/10.1007/11564089_7CrossRefGoogle Scholar
  14. 14.
    Wang, H., Ding, C., Huang, H.: Multi-label linear discriminant analysis. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 126–139. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15567-3_10CrossRefGoogle Scholar
  15. 15.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Hum. Genet. 7(2), 179–188 (1936)Google Scholar
  16. 16.
    Sun, L., Ji, S., Yu, S., Ye, J.: On the equivalence between canonical correlation analysis and orthonormalized partial least squares. In: IJCAI, Padadena, pp. 1230–1235 (2009)Google Scholar
  17. 17.
    Yu, G., Zhang, G., Domeniconi, C., Yu, Z., You, J.: Semi-supervised classification based on random subspace dimensionality reduction. Pattern Recognit. 45(3), 1119–1135 (2012)CrossRefGoogle Scholar
  18. 18.
    Wu, H., Prasad, S.: Semi-supervised dimensionality reduction of hyperspectral imagery using pseudo-labels. Pattern Recognit. 74, 212–224 (2018)CrossRefGoogle Scholar
  19. 19.
    Yuan, Y., Zhao, K., Lu, H.: Multi-label linear discriminant analysis with locality consistency. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8835, pp. 386–394. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12640-1_47CrossRefGoogle Scholar
  20. 20.
    Yu, Y., Yu, G., Chen, X., Ren, Y.: Semi-supervised multi-label linear discriminant analysis. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10634, pp. 688–698. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70087-8_71CrossRefGoogle Scholar
  21. 21.
    Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. TPAMI 35(1), 171–184 (2013)CrossRefGoogle Scholar
  22. 22.
    Yang, S., Wang, X., Wang, M., Han, Y., Jiao, L.: Semi-supervised low-rank representation graph for pattern recognition. IEEE Trans. Image Process. 7(2), 131–136 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhuang, L., Wang, J., Lin, Z., Yang, A.Y., Ma, Y., Yu, N.: Locality-preserving low-rank representation for graph construction from nonlinear manifolds. Neurocomputing 175, 715–722 (2016)CrossRefGoogle Scholar
  24. 24.
    Wen, J., Zhang, B., Xu, Y., Yang, J., Han, N.: Adaptive weighted nonnegative low-rank representation. Pattern Recognit. 81, 326–340 (2018)CrossRefGoogle Scholar
  25. 25.
    Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: NIPS, pp. 612–620. MIT Press, Spain (2011)Google Scholar
  26. 26.
    Zhang, H., Lin, Z., Zhang, C.: A counterexample for the validity of using nuclear norm as a convex surrogate of rank. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8189, pp. 226–241. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40991-2_15CrossRefGoogle Scholar
  27. 27.
    Wang, C., Yan, S., Zhang, L., Zhang, H.: Multi-label sparse coding for automatic image annotation. In: IEEE CVPR, pp. 1643–1650. IEEE, Miami Beach (2009)Google Scholar
  28. 28.
    Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRefGoogle Scholar
  29. 29.
    Chung, F.R.: Spectral Graph Theory. American Mathematical Soc (No. 92) (1997)Google Scholar
  30. 30.
    Wang, F., Zhang, C.: Label propagation through linear neighborhoods. TKDE 20(1), 55–67 (2007)Google Scholar
  31. 31.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. (CSUR) 40(2), 5 (2008)CrossRefGoogle Scholar
  32. 32.
    Zhang, M., Zhou, Z.: ML-kNN: a lazy learning approach to multi-label learning. Pattern Recognit. 40(7), 2038–2048 (2007)CrossRefGoogle Scholar
  33. 33.
    Bucak, S.S., Jin, R., Jain, A.K.: Multi-label learning with incomplete class assignments. In: CVPR, pp. 2801–2808. IEEE, Colorado, Colorado Springs (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Computing and InformationUniversity of PittsburghPittsburghUSA

Personalised recommendations