Advertisement

Knowledge Graph Embedding via Entities’ Type Mapping Matrix

  • Md Mostafizur Rahman
  • Atsuhiro Takasu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11303)

Abstract

Knowledge graph (KG) is the most popular method for presenting knowledge in search engines and other natural-language processing (NLP) applications. However, KG remains incomplete, inconsistent, and not completely accurate. To deal with the challenges of KGs, many state-of-the-art models, such as TransE, TransH, and TransR, have been proposed. TransE and TransH use one semantic space for entities and relations, whereas TransR uses two different semantic spaces in its embedding model. An issue is that these proposed models ignore the category-specific projection of entities. For example, the entity “Washington” could belong to the person or location category depending on its context or relationships. An entity may therefore involve multiple types or aspects. Considering all entities in just one semantic space is therefore not a logical approach to building an effective model. In this paper, we propose TransET, which maps each entity based on its type. We can then apply any other existing translation-distance-based embedding models such as TransE or TransR. We evaluated our model using two tasks that involve link prediction and triple classification. Our model achieved a significant and consistent improvement over other state-of-the-art models.

Keywords

Knowledge graph Translation based model Link prediction 

Notes

Acknowledgments

This work was supported by a JSPS Grant-in-Aid for Scientific Research (B) (15H02789, 15H02703).

References

  1. 1.
    Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)zbMATHGoogle Scholar
  2. 2.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)Google Scholar
  3. 3.
    Bordes, A., Glorot, X., Weston, J., Bengio, Y.: Joint learning of words and meaning representations for open-text semantic parsing. In: Artificial Intelligence and Statistics, pp. 127–135 (2012)Google Scholar
  4. 4.
    Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)Google Scholar
  6. 6.
    Bordes, A., Weston, J., Collobert, R., Bengio, Y., et al.: Learning structured embeddings of knowledge bases. In: AAAI, vol. 6, p. 6 (2011)Google Scholar
  7. 7.
    Krompaß, D., Baier, S., Tresp, V.: Type-constrained representation learning in knowledge graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 640–655. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25007-6_37CrossRefGoogle Scholar
  8. 8.
    Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)Google Scholar
  9. 9.
    Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, vol. 15, pp. 2181–2187 (2015)Google Scholar
  10. 10.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  11. 11.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  12. 12.
    Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML, vol. 11, pp. 809–816 (2011)Google Scholar
  13. 13.
    Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing YAGO: scalable machine learning for linked data. In: Proceedings of the 21st International Conference on World Wide Web, pp. 271–280. ACM (2012)Google Scholar
  14. 14.
    Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: Advances in Neural Information Processing Systems, pp. 926–934 (2013)Google Scholar
  15. 15.
    Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706. ACM (2007)Google Scholar
  16. 16.
    Trouillon, T., Dance, C.R., Gaussier, É., Welbl, J., Riedel, S., Bouchard, G.: Knowledge graph completion via complex tensor factorization. J. Mach. Learn. Res. 18(1), 4735–4772 (2017)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, vol. 14, pp. 1112–1119 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.Sokendai (The Graduate University for Advanced Studies)TokyoJapan

Personalised recommendations