HISBmodel: A Rumor Diffusion Model Based on Human Individual and Social Behaviors in Online Social Networks

  • Adil Imad Eddine Hosni
  • Kan LiEmail author
  • Sadique Ahmed
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11302)


This paper attempts to address the rumor propagation problem in online social networks (OSNs) and proposes a novel rumor diffusion model, named the HISBmodel. Its originality lies in the consideration of various human factors such as the human social and individual behaviors and the individuals’ opinions. Moreover, we present new metrics that allow accurate assessment of the propagation of rumors. Based on this model, we present a strategy to minimize the influence of the rumor. Instead of blocking nodes, we propose to launch a truth campaign to raise the awareness to prevent the influence of a rumor. This problem is formulated from the perspective of a network inference using the survival theory. The experimental results illustrate that the HISBmodel depicts the evolution of rumor propagation more realistic than classical models. Moreover, Our model highlights the impact of human factors accurately as proven in the studies of the literature. Finally, these experiments showed the outstanding performance of our strategy to minimize the influence of the rumor by selecting precisely the candidate nodes to diminish the influence of the rumor.


Rumor propagation Humans individual behaviors Humans social behaviors Rumor influence minimization 



The Research was supported in part by National Basic Research Program of China (973 Program, No.2013CB329605).


  1. 1.
    Afassinou, K.: Analysis of the impact of education rate on the rumor spreading mechanism. Phys. A Stat. Mech. Appl. 414, 43–52 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550. Springer, Heidelberg (2010). Scholar
  3. 3.
    Bredereck, R., Elkind, E.: Manipulating opinion diffusion in social networks. In: Proceedings of the 26th IJCAI (2017)Google Scholar
  4. 4.
    Budak, C., Abbadi, A.E.: Limiting the spread of misinformation in social networks. Distribution, pp. 665–674 (2011)Google Scholar
  5. 5.
    Daley, D., Kendall, D.: Epidemics and rumours. Nature 204(4963), 1118 (1964)CrossRefGoogle Scholar
  6. 6.
    DiFonzo, N., Bordia, P., Rosnow, R.L.: Reining in rumors. Organ. Dyn. 23(1), 47–62 (1994)CrossRefGoogle Scholar
  7. 7.
    Fan, L., Lu, Z., Wu, W., Bhavani, T., Ma, H., Bi, Y.: Least cost rumor blocking in social networks. In: IEEE 33rd International Conference on Distributor Computer Systems (2013)Google Scholar
  8. 8.
    Galam, S.: Modelling rumors: the no plane pentagon french hoax case. Phys. A Stat. Mech. Appl. 320(7603), 571–580 (2003)CrossRefGoogle Scholar
  9. 9.
    Gomez-Rodriguez, M., Leskovec, J.: Modeling information propagation with survival theory. In: Proceedings of the 30th ICML (ICML-13), pp. 666–674 (2013)Google Scholar
  10. 10.
    Han, S., Zhuang, F., He, Q., Shi, Z., Ao, X.: Energy model for rumor propagation on social networks. Phys. A Stat. Mech. Appl. 394, 99–109 (2014)CrossRefGoogle Scholar
  11. 11.
    He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization in social networks under the competitive linear threshold model. Education p. Technical report CoRR abs/1110.4723 (2011)Google Scholar
  12. 12.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, p. 137 (2003)Google Scholar
  13. 13.
    Kimura, M., Saito, K., Motoda, H.: Minimizing the spread of contamination by blocking links in a network. In: AAAI, pp. 1175–1180 (2008)Google Scholar
  14. 14.
    Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection, June 2014Google Scholar
  15. 15.
    Ma, J., Li, D., Tian, Z.: Rumor spreading in online social networks by considering the bipolar social reinforcement. Phys. A: Stat. Mech. Appl. 447, 108–115 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Marion, J.B., S.T.T.: Classical dynamics of particles and systems. Thomson (2003)Google Scholar
  17. 17.
    Meshi, D., Morawetz, C., Heekeren, H.R.: Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use. Front. Hum. Neurosci. 7, 439 (2013)CrossRefGoogle Scholar
  18. 18.
    Wang, B., Chen, G., Fu, L., Song, L., Wang, X.: Drimux: dynamic rumor influence minimization with user experience in social networks. IEEE Trans. Knowl. Data Eng. 29(10), 2168–2181 (2017)CrossRefGoogle Scholar
  19. 19.
    Wang, H., Deng, L., Xie, F., Xu, H., Han, J.: A new rumor propagation model on SNS structure. In: Proceedings of IEEE International Conference Granular Computing GrC 2012 (2012)Google Scholar
  20. 20.
    Wang, J., Wang, Y.Q., Li, M.: Rumor spreading considering the herd mentality mechanism. In: Control Conference, 2017 36th Chinese, pp. 1480–1485. IEEE (2017)Google Scholar
  21. 21.
    Wang, Y.Q., Yang, X.Y., Han, Y.L.: Rumor spreading model with trust mechanism in complex social networks. Commun. Theor. Phys. 59(4), 510 (2013)CrossRefGoogle Scholar
  22. 22.
    Xia, L.L., Jiang, G.P., Song, B., Song, Y.R.: Rumor spreading model considering hesitating mechanism in complex social networks. Phys. A Stat. Mech. Appl. 437, 295–303 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yang, J., Leskovec, J.: Patterns of temporal variation in online media. Time 468, 177–186 (2011)Google Scholar
  24. 24.
    Zhao, L., Cui, H., Qiu, X., Wang, X., Wang, J.: SIR rumor spreading model in the new media age. Phys. A Stat. Mech. Appl. 392(4), 995–1003 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhao, L., Wang, J., Chen, Y., Wang, Q., Cheng, J., Cui, H.: SIHR rumor spreading model in social networks. Phys. A Stat. Mech. Appl. 391(7), 2444–2453 (2012)CrossRefGoogle Scholar
  26. 26.
    Zhao, L., Wang, Q., Cheng, J., Chen, Y., Wang, J., Huang, W.: Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal. Phys. A Stat. Mech. Appl. 390(13), 2619–2625 (2011)CrossRefGoogle Scholar
  27. 27.
    Zubiaga, A., Hoi, G.W.S., Liakata, M., Procter, R.: Pheme dataset of rumours and non-rumours. (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Adil Imad Eddine Hosni
    • 1
    • 2
  • Kan Li
    • 1
    Email author
  • Sadique Ahmed
    • 1
  1. 1.School of Computer ScienceBeijing Institute of TechnologyBeijingChina
  2. 2.Ecole Militaire PolytechniqueBordj El-Bahri, AlgiersAlgeria

Personalised recommendations