Banknote Issuing Country Identification Using Image Processing and Neural Networks

  • Adnan KhashmanEmail author
  • Waleed Ahmed
  • Sadig Mammadli
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 896)


The work in this paper investigates developing an identification system for 21 countries using images of their banknotes and neural network classifiers. We consider the banknotes of 19 Asian countries, the European Union (EU), and the USA. Our motivation to investigate the Asian currencies is the increased global interaction in tourism and international trading with these countries where they have diverse and impressive banknote designs; thus making it difficult to identify by foreign visitors or traders. Our database comprises 504 original and pre-processed images of 6 banknotes of each of the 21 currencies. The investigated 19 Asian countries in this work are Afghanistan, Armenia, Azerbaijan, Bangladesh, Bhutan, Brunei, Burma, Cambodia, China, India, Kuwait, Maldives, Pakistan, Saudi Arabia, Sri Lanka, Syria, Tajikistan, Turkey, and United Arab Emirates. Most existing banknote identification systems aim to identify the currency value or decide whether a banknote is counterfeit. Our presented work is novel as it focuses on identifying the issuing country. Furthermore, we apply two pattern-averaging methods using (5 × 5) and (10 × 10) kernels, and follow two learning schemes to train and test the proposed neural identification models by using (50:50) and (75:25) training-to-validation data ratios. The obtained experimental results are considered as successful.


Artificial intelligence Image processing Pattern averaging Neural networks Banknote identification Currency recognition 


  1. 1.
    Khashman, A., Sekeroglu, B.: Multi-banknote identification using a single neural network. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems (ACIVS2005). LNCS, vol. 3708, pp. 123–129. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Khashman, A., Ahmed, W.: Intelligent banknote issuing country identification. In: 3rd International Conference on Computational Mathematics and Engineering Sciences (CMES-2018), 4–6 May 2018, Girne, N. Cyprus (2018)Google Scholar
  3. 3.
    Oyedotun, O.K., Khashman, A.: Banknote recognition: investigating processing and cognition framework using competitive neural network. Cogn. Neurodyn. 11(1), 67–79 (2017)CrossRefGoogle Scholar
  4. 4.
    Khashman, A., Sekeroglu, B.: A novel thresholding method for text separation and document enhancement. In: 11th Panhellenic Conference on Informatics, pp. 323–330, Greece (2007)Google Scholar
  5. 5.
    Yan, W.Q., Chambers, J., Garhwal, A.: An empirical approach for currency identification. Multimedia Tools Appl. 74(13), 4723–4733 (2015)CrossRefGoogle Scholar
  6. 6.
    Zlokazov, Y.E., Starikov, R.S., Odinokov, S.B.: Specificity of correlation pattern recognition methods application in security holograms identity control apparatus. Phys. Procedia 73, 308–312 (2015)CrossRefGoogle Scholar
  7. 7.
    Kamal, S., Chawla, S.S., Goel, N.: Feature extraction and identification of indian currency notes. In: 5th National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), Patna, India (2015)Google Scholar
  8. 8.
    Dominguez, R., Lara-Alvarez, C., Bayro-Corrochano, E.: Automated banknote identification method for the visually impaired. In: 19th Iberoamerican Congress on Pattern Recognition (CIARP). LNCS, vol. 8827, pp. 572–579. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Zhu, X., Ren, M.: A recognition method of RMB numbers based on character features. In: 2nd International Conference on Information, Electronics and Computer (ICIEAC), vol. 59, pp. 21–54 (2014)Google Scholar
  10. 10.
    Rahman, S., Banik, P., Naha, S.: LDA based paper currency recognition system using edge histogram descriptor. In: 17th International Conference on Computer and Information Technology (ICCIT), pp. 326–331 (2014)Google Scholar
  11. 11.
    Bruna, A., Farinella, G.M., Giuseppe, C.G.: Forgery detection and value identification of Euro banknotes. Sensors 13(2), 2515–2529 (2013)CrossRefGoogle Scholar
  12. 12.
    Gai, S., Liu, P., Liu, J.: Banknote image retrieval using rotated quaternion wavelet filters. Int. J. Comput. Intell. Syst. 4(2), 268–276 (2011)CrossRefGoogle Scholar
  13. 13.
    Jin, Y., Song, L., Tang, X.: A hierarchical approach for banknote image processing using homogeneity and FFD model. IEEE Signal Process. Lett. 15, 425–428 (2008)CrossRefGoogle Scholar
  14. 14.
    Khashman, A., Sekeroglu, B., Dimililer, K.: ICIS: a novel coin identification system. In: Intelligent Computing in Signal Processing and Pattern Recognition, pp. 913–918 (2006)Google Scholar
  15. 15.
    Khashman, A.: Intelligent face recognition: local versus global pattern averaging. In: Australasian Joint Conference on Artificial Intelligence, pp. 956–961 (2006)Google Scholar
  16. 16.
    Khashman, A., Dimililer, K.: Medical radiographs compression using neural networks and haar wavelet. In: EUROCON 2009, pp. 1448–1453. IEEE (2009)Google Scholar
  17. 17.
    Olaniyi, E.O., Khashman, A.: Onset diabetes diagnosis using artificial neural network. Int. J. Sci. Eng. Res. 5(10), 754–759 (2014)Google Scholar
  18. 18.
    Khashman, A.: An emotional system with application to blood cell type identification. Trans. Inst. Meas. Control 34(2–3), 125–147 (2012)CrossRefGoogle Scholar
  19. 19.
    Oyedotun, O.K., Khashman, A.: Document segmentation using textural features summarization and feedforward neural network. Appl. Intell. 45(1), 198–212 (2016)CrossRefGoogle Scholar
  20. 20.
    Khashman, Z., Khashman, A.: Anticipation of political party voting using artificial intelligence. Procedia Comput. Sci. 102, 611–616 (2016)CrossRefGoogle Scholar
  21. 21.
    Oyedotun, O.K., Olaniyi, E.O., Khashman, A.: Deep learning in character recognition considering pattern invariance constraints. Int. J. Intell. Syst. Appl. 7(7), 1–10 (2015)Google Scholar
  22. 22.
    Khashman, A.: Investigation of different neural models for blood cell type identification. Neural Comput. Appl. 21(6), 1177–1183 (2012)CrossRefGoogle Scholar
  23. 23.
    Khashman, Z., Khashman, A.: Modeling people’s anticipation for Cyprus peace mediation outcome using a neural model. Procedia Comput. Sci. 120, 734–741 (2017)CrossRefGoogle Scholar
  24. 24.
    Olaniyi, E.O., Oyedotun, O.K., Khashman, A.: Heart diseases diagnosis using neural networks arbitration. Int. J. Intell. Syst. Appl. 7(12), 72 (2015)Google Scholar
  25. 25.
    Banknote Museum. Accessed 14 Mar 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adnan Khashman
    • 1
    • 2
    Email author
  • Waleed Ahmed
    • 1
    • 2
  • Sadig Mammadli
    • 3
    • 4
  1. 1.European Centre for Research and Academic Affairs (ECRAA)Nicosia, Mersin 10Turkey
  2. 2.Final International UniversityKyrenia, Mersin 10Turkey
  3. 3.University of KyreniaKyrenia, Mersin 10Turkey
  4. 4.Odlar Yurdu UniversityBakuAzerbaijan

Personalised recommendations