Global Stability Analysis of HIV+ Model

  • Farouk Tijjani Saad
  • Tamer SanlidagEmail author
  • Evren Hincal
  • Murat Sayan
  • Isa Abdullahi Baba
  • Bilgen Kaymakamzade
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 896)


We developed and studied a mathematical model of HIV+. Two equilibriums points were found, disease free and endemic equilibrium, and basic reproduction ratio \( R_{0} \) was also calculated by the use of next generation matrix. Global stability analysis of the equilibria was carried out by the use of Lyapunov function, and it was shown that the stability of the equilibria depends on the magnitude of the basic reproduction ratio. When \( R_{0} < 1 \), the disease free equilibrium is globally asymptotically stable, and disease dies out. On the other hand if \( R_{0} \ge 1 \), the endemic equilibrium is globally asymptotically stable and epidemics occurs. Reported cases of 13646 HIV-1 positive were obtained in the year 2016 from Ministry of Health, Turkey (MOH). This data is used to present the numerical simulations, which supports the analytic result. \( R_{0} \) was found to be 1.98998, which is bigger than 1, this shows the threat posed by HIV in Turkey.


HIV AIDS Mathematical model Global stability Basic reproduction ratio Turkey 


  1. 1.
    Anderson, R.M., Medley, G., May, F.R.M., Johnson, A.M.: A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J. Math. Appl. Med. Biol. 3, 229–263 (1986)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cai, L., Li, X., Ghosh, M., Guo, B.: Stability analysis of an HIV/Aids epidemic model with treatment. J. Comput. Appl. Math. 229, 313–323 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, Hoboken (2000)Google Scholar
  4. 4.
    Al-Sheikh, S., Musali, F., Alsolami, M.: Stability analysis of an HIV/AIDS epidemic model with screening. Int. Math. Forum 6(66), 3251–3273 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Li, Q., Cao, S., Chen, X., Sun, G., Liu, Y., Jia, Z.: Stability analysis of an HIV/AIDS dynamics model with drug resistance. Discrete Dyn. Nat. Soc. 2012, 162527. Scholar
  6. 6.
    Kockaya, G., Elbir, T.Z., Yenilmez, F.B., Dalgic, C., Malhan, S., Çerçi, P., Oksuz, E., Unal, S.: Analysis of the treatment costs of HIV/AIDS in Turkey. Farmeconomia Health Econ. Therapeutic Pathways 17(1), 13–17 (2016). Scholar
  7. 7.
    Mukandavire, Z., Das, P., Chiyaka, C., Nyabadza, F.: Global analysis of an HIV/AIDS epidemic model. World J. Model. Siml. 6(3), 231–240 (2010)Google Scholar
  8. 8.
    Sayan, M., Hıncal, E., Şanlıdağ, T., Kaymakamzade, B., Saad, F.T., Baba, İ.B.: Dynamics of HIV/AIDS in Turkey from 1985 to 2016. Qual. Quant. 1–13 (2017). Scholar
  9. 9.
    Ayranci, U.: Aids knowledge and attitudes in a Turkish population. An epidemiology study. BMC Public Health 5, 95 (2005).
  10. 10.
    Erbaydar, T., Eybaydar, N.P.: Status HIV/AIDS epidemic in Turkey. Acta Medica 1, 19–24 (2012)Google Scholar
  11. 11.
    Alpsar, D., Agacfidan, A., Lübke, N., Verheyen, J., Eraksoy, H., Cagatay, A., Bozkaya, E., Kaiser, R., Akgül, B.: Molecular epidemiology of HIV in a cohort of men having sex with men from Istanbul. Med. Microbiol. Immunol. 202, 251–255 (2013). Scholar
  12. 12.
    Cassels, S., Clark, S.J., Morris, M.: Mathematical models for HIV transmission dynamics: tools for social and behavioral science research. J. Acquir. Immune Defic. Syndr. 47(1), 34–39 (2008)CrossRefGoogle Scholar
  13. 13.
    Korenromp, E.L., Bakker, R., de Vlas, S.J., Gray, R.H., Wawer, M.J., Serwadda, D., Sewankambo, N.K., Habbema, J.D.: HIV dynamics and behaviour change as determinants of the impact of sexually transmitted disease treatment on HIV transmission in the context of the Rakai trial. AIDS 16, 2209–2218 (2002)CrossRefGoogle Scholar
  14. 14.
    White, R.G., Orroth., K.K., Korenromp, E.L., Bakker, R., Wambura, M., Sewankambo, N.K., Gray, R.H., Kamali, A., Whitworth, J.A., Grosskurth, H., Habbema, J.D., Hayes, R.J.: Can population differences explain the contrasting results of the Mwanza, Rakai, and Masaka HIV/sexually transmitted disease intervention trials: a modeling study. J. Acquir. Immune Defic. Syndr. 37, 1500–1513 (2004)Google Scholar
  15. 15.
    Choi, B.C.K., Pak, A.W.P.: A simple approximate mathematical model to predict the number of severe acute respiratory syndrome cases and deaths. J. Epidemiol. Commun. 57, 831–835 (2003)CrossRefGoogle Scholar
  16. 16.
    Woolhouse, M.E.J., Anderson, R.M.: Understanding the epidemiology of BSE. Trends Microbiol. 5, 421–424 (1997)CrossRefGoogle Scholar
  17. 17.
    Ferguson, N.M., Donnelly, C.A., Anderson, R.M.: The foot – and – mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science 292, 1155–1160 (2001)CrossRefGoogle Scholar
  18. 18.
    Mills, C.E., Robins, J.M., Lipsitch, M.: Transmissibility of 1918 pandemic influenza. Nature 432, 904–906 (2004)CrossRefGoogle Scholar
  19. 19.
    Wonham, M.J., de-Camino-Beek, T., Lewis, M.A.: An epidemiological model for West Nile virus: invasion analysis and control applications. Proc. R. Soc. B 271, 501–507 (2004)CrossRefGoogle Scholar
  20. 20.
    Luz, M.P., Cadeco, C.T., Massad, E., Struchiner, C.J.: Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 871–878 (2003)CrossRefGoogle Scholar
  21. 21.
    Hagmann, R., Charlwood, J.D., Gil, V., Conceicao, F., do-Rosario, V., Smith, T.A.: Malaria and its possible control on the Island of Principe. Malaria J. 2, 15 (2003)Google Scholar
  22. 22.
    Chowell, G., Hengartner, N.W., Castillo-Chavez, C., Fenimore, P.W., Hyman, J.M.: The basic ratio number of Ebola and the effects of public health measures: the cases of Congo and Uganda. J. Theor. Biol. 229, 119–126 (2004)Google Scholar
  23. 23.
    Gravenor, M.B., Papasozomenos, P., McLean, A.R., Neophytou, G.: A scrapie epidemic in cyprus. Epidemiol. Infect. 132, 751–760 (2004)CrossRefGoogle Scholar
  24. 24.
    Rudnick, S.N., Milton, D.K.: Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 13, 237–245 (2003)CrossRefGoogle Scholar
  25. 25.
    Kaplan, E.H., Craft, D.L., Wein, L.M.: Emergence response to small pox attack: the case for mass vaccination. Proc. Natl. Acad. Sci. 99, 10935–10940 (2002)CrossRefGoogle Scholar
  26. 26.
    Kaymakamzade, B., Şanlıdağ, T., Hıncal, E., Sayan, M., Saad, F.T., Baba, İ.B.: Role of awareness in controlling HIV/AIDS: a mathematical model. Qual. Quant. (2017). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Farouk Tijjani Saad
    • 1
  • Tamer Sanlidag
    • 2
    • 4
    Email author
  • Evren Hincal
    • 1
  • Murat Sayan
    • 3
    • 4
  • Isa Abdullahi Baba
    • 1
  • Bilgen Kaymakamzade
    • 1
  1. 1.Department of MathematicsNear East UniversityNicosiaCyprus
  2. 2.Faculty of Medicine, Department of Medical MicrobiologyCelal Bayar UniversityManisaTurkey
  3. 3.Faculty of Medicine, Clinical Laboratory, PCR UnitKocaeli UniversityKocaeliTurkey
  4. 4.Research Center of Experimental Health SciencesNear East UniversityNicosiaCyprus

Personalised recommendations