Advertisement

Nonparametric Bayesian Volatility Estimation

  • Shota Gugushvili
  • Frank van der Meulen
  • Moritz Schauer
  • Peter SpreijEmail author
Chapter
Part of the MATRIX Book Series book series (MXBS, volume 2)

Abstract

Given discrete time observations over a fixed time interval, we study a nonparametric Bayesian approach to estimation of the volatility coefficient of a stochastic differential equation. We postulate a histogram-type prior on the volatility with piecewise constant realisations on bins forming a partition of the time interval. The values on the bins are assigned an inverse Gamma Markov chain (IGMC) prior. Posterior inference is straightforward to implement via Gibbs sampling, as the full conditional distributions are available explicitly and turn out to be inverse Gamma. We also discuss in detail the hyperparameter selection for our method. Our nonparametric Bayesian approach leads to good practical results in representative simulation examples. Finally, we apply it on a classical data set in change-point analysis: weekly closings of the Dow-Jones industrial averages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The research leading to the results in this paper has received funding from the European Research Council under ERC Grant Agreement 320637.

References

  1. 1.
    Allen, E.: Modeling with Itô stochastic differential equations. Mathematical Modelling: Theory and Applications, vol. 22. Springer, Dordrecht (2007)Google Scholar
  2. 2.
    Batz, P., Ruttor, A., Opper, M.: Approximate Bayes learning of stochastic differential equations. Phys. Rev. E 98, 022109 (2018)MathSciNetGoogle Scholar
  3. 3.
    Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Björk, T.: Arbitrage Theory in Continuous Time, 3rd edn. Oxford University Press, Oxford (2009)zbMATHGoogle Scholar
  5. 5.
    Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)MathSciNetGoogle Scholar
  6. 6.
    Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–332 (2002)Google Scholar
  7. 7.
    Cemgil, A.T., Dikmen, O.: Conjugate gamma Markov random fields for modelling nonstationary sources. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) International Conference on Independent Component Analysis and Signal Separation (ICA 2007), pp. 697–705. Springer, Berlin (2007)Google Scholar
  8. 8.
    Cemgil, A.T., Dikmen, O.: Inference and learning in gamma chains for Bayesian audio processing. J. Acoust. Soc. Am. 123(5), 3585–3585 (2008)Google Scholar
  9. 9.
    Cemgil, A.T., Févotte, C., Godsill, S.J.: Variational and stochastic inference for Bayesian source separation. Digital Signal Process. 17(5), 891–913 (2007). Special Issue on Bayesian Source SeparationGoogle Scholar
  10. 10.
    Chen, J., Gupta, A.K.: Parametric Statistical Change Point Analysis, 2nd edn. Birkhäuser/Springer, New York (2012). With applications to genetics, medicine, and financeGoogle Scholar
  11. 11.
    Cox, J.C., Ingersoll Jr., J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53(2), 385–407 (1985)MathSciNetzbMATHGoogle Scholar
  12. 12.
    De Gregorio, A., Iacus, S.M.: Least squares volatility change point estimation for partially observed diffusion processes. Commun. Stat. Theory Methods 37(13–15), 2342–2357 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B: Methodol. 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Díaz, J.: Bayesian detection of a change of scale parameter in sequences of independent gamma random variables. J. Econom. 19(1), 23–29 (1982)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Dikmen, O., Cemgil, A.T.: Inference and parameter estimation in Gamma chains. Tech. Rep. CUED/F-INFENG/TR.596, University of Cambridge (2008)Google Scholar
  16. 16.
    Dikmen, O., Cemgil, A.T.: Gamma Markov random fields for audio source modeling. IEEE Trans. Audio Speech Lang. Process. 18(3), 589–601 (2010)Google Scholar
  17. 17.
    Donnet, S., Rivoirard, V., Rousseau, J., Scricciolo, C.: Posterior concentration rates for empirical Bayes procedures with applications to Dirichlet process mixtures. Bernoulli 24(1), 231–256 (2018)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1(3), 281–299 (1995)zbMATHGoogle Scholar
  20. 20.
    Efron, B.: Large-scale inference, Institute of Mathematical Statistics (IMS) Monographs, vol. 1. Cambridge University Press, Cambridge (2010). Empirical Bayes methods for estimation, testing, and predictionGoogle Scholar
  21. 21.
    Elerian, O., Chib, S., Shephard, N.: Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69(4), 959–993 (2001)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Fearnhead, P.: Exact and efficient Bayesian inference for multiple changepoint problems. Stat. Comput. 16(2), 203–213 (2006)MathSciNetGoogle Scholar
  23. 23.
    Feller, W.: Diffusion processes in genetics. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pp. 227–246. University of California Press, Berkeley (1951)Google Scholar
  24. 24.
    Feller, W.: Two singular diffusion problems. Ann. Math. 54(1), 173–182 (1951)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Fuchs, C.: Inference for Diffusion Processes. Springer, Heidelberg (2013). With applications in life sciences, With a foreword by Ludwig FahrmeirGoogle Scholar
  26. 26.
    Gelfand, A.E., Smith, A.F.M.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85(410), 398–409 (1990)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis, 3rd edn. Texts in Statistical Science Series. CRC Press, Boca Raton (2014)zbMATHGoogle Scholar
  28. 28.
    Gelman, A., Roberts, G.O., Gilks, W.R.: Efficient Metropolis jumping rules. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics, vol. 5, pp. 599–607. Oxford University Press, Oxford (1996)Google Scholar
  29. 29.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)zbMATHGoogle Scholar
  30. 30.
    Ghosal, S., van der Vaart, A.: Fundamentals of nonparametric Bayesian inference. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 44. Cambridge University Press, Cambridge (2017)Google Scholar
  31. 31.
    Godsill, S.J., Cemgil, A.T., Févotte, C., Wolfe, P.J.: Bayesian computational methods for sparse audio and music processing. In: 15th European Signal Processing Conference (EURASIP), pp. 345–349. IEEE, Poznan (2007)Google Scholar
  32. 32.
    Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Green, P.J.: Trans-dimensional Markov chain Monte Carlo. In: Highly Structured Stochastic Systems, Oxford Statistical Science Series, vol. 27, pp. 179–206. Oxford University Press, Oxford (2003). With part A by Simon J. Godsill and part B by Juha HeikkinenGoogle Scholar
  34. 34.
    Gugushvili, S., Spreij, P.: Consistent non-parametric Bayesian estimation for a time-inhomogeneous Brownian motion. ESAIM Probab. Stat. 18, 332–341 (2014)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Gugushvili, S., Spreij, P.: Nonparametric Bayesian drift estimation for multidimensional stochastic differential equations. Lith. Math. J. 54(2), 127–141 (2014)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Gugushvili, S., Spreij, P.: Posterior contraction rate for non-parametric Bayesian estimation of the dispersion coefficient of a stochastic differential equation. ESAIM Probab. Stat. 20, 143–153 (2016)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Gugushvili, S., van der Meulen, F., Schauer, M., Spreij, P.: Nonparametric Bayesian estimation of a Hölder continuous diffusion coefficient (2017). Preprint. arXiv:1706.07449v4Google Scholar
  38. 38.
    Gugushvili, S., van der Meulen, F., Schauer, M., Spreij, P.: Nonparametric Bayesian volatility learning under microstructure noise (2018). arXiv:1805.05606v1Google Scholar
  39. 39.
    Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Hindriks, R.: Empirical dynamics of neuronal rhythms: data-driven modeling of spontaneous magnetoencephalographic and local field potential recordings. PhD. Thesis, Vrije Universiteit Amsterdam (2011)Google Scholar
  41. 41.
    Hsu, D.A.: Tests for variance shift at an unknown time point. J. R. Stat. Soc.: Ser. C: Appl. Stat. 26(3), 279–284 (1977)Google Scholar
  42. 42.
    Hsu, D.A.: Detecting shifts of parameter in gamma sequences with applications to stock price and air traffic flow analysis. J. Am. Stat. Assoc. 74(365), 31–40 (1979)Google Scholar
  43. 43.
    Iacus, S.M.: Simulation and inference for stochastic differential equations. Springer Series in Statistics. Springer, New York (2008). With R examplesGoogle Scholar
  44. 44.
    Iacus, S.M.: SDE: simulation and inference for Stochastic differential equations (2016). https://CRAN.R-project.org/package=sde. R package version 2.0.15
  45. 45.
    Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic volatility models. J. Bus. Econ. Stat. 12(4), 371–389 (1994)zbMATHGoogle Scholar
  46. 46.
    Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J. Econom. 122(1), 185–212 (2004)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1991)zbMATHGoogle Scholar
  48. 48.
    Küchler, U., Neumann, K., Sørensen, M., Streller, A.: Stock returns and hyperbolic distributions. Math. Comput. Model. 29(10), 1–15 (1999)zbMATHGoogle Scholar
  49. 49.
    Martin, R., Ouyang, C., Domagni, F.: ‘Purposely misspecified’ posterior inference on the volatility of a jump diffusion process. Statist. Probab. Lett. 134(Supplement C), 106–113 (2018)Google Scholar
  50. 50.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)Google Scholar
  51. 51.
    Müller, P., Mitra, R.: Bayesian nonparametric inference—why and how. Bayesian Anal. 8(2), 269–302 (2013)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Musiela, M., Rutkowski, M.: Martingale methods in financial modelling. Stochastic Modelling and Applied Probability, vol. 36, 2nd edn. Springer, Berlin (2005)Google Scholar
  53. 53.
    Mykland, P.A.: A Gaussian calculus for inference from high frequency data. Ann. Finance 8(2–3), 235–258 (2012)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Nickl, R., Söhl, J.: Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions. Ann. Stat. 45(4), 1664–1693 (2017)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Papaspiliopoulos, O., Pokern, Y., Roberts, G.O., Stuart, A.M.: Nonparametric estimation of diffusions: a differential equations approach. Biometrika 99(3), 511–531 (2012)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Petrone, S., Rousseau, J., Scricciolo, C.: Bayes and empirical Bayes: do they merge? Biometrika 101(2), 285–302 (2014)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Pokern, Y., Stuart, A.M., van Zanten, J.H.: Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs. Stoch. Process. Appl. 123(2), 603–628 (2013)MathSciNetzbMATHGoogle Scholar
  58. 58.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2017)Google Scholar
  59. 59.
    Robbins, H.: An empirical Bayes approach to statistics. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. I, pp. 157–163. University of California Press, Berkeley (1956)Google Scholar
  60. 60.
    Robbins, H.: The empirical Bayes approach to statistical decision problems. Ann. Math. Stat. 35, 1–20 (1964)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer Texts in Statistics. Springer, New York (2004)Google Scholar
  62. 62.
    Roberts, G.O., Stramer, O.: On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm. Biometrika 88(3), 603–621 (2001)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Ruttor, A., Batz, P., Opper, M.: Approximate Gaussian process inference for the drift function in stochastic differential equations. In: Burges, C.J.C. Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Proceedings of the 26th International Conference on Neural Information Processing Systems, pp. 2040–2048. Curran Associates, New York (2013)Google Scholar
  64. 64.
    Sherlock, C., Fearnhead, P., Roberts, G.O.: The random walk Metropolis: linking theory and practice through a case study. Stat. Sci. 25(2), 172–190 (2010)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London (1986)Google Scholar
  66. 66.
    Soulier, P.: Nonparametric estimation of the diffusion coefficient of a diffusion process. Stoch. Anal. Appl. 16(1), 185–200 (1998)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82(398), 528–550 (1987). With discussion and with a reply by the authorsGoogle Scholar
  68. 68.
    Tierney, L.: Markov chains for exploring posterior distributions. Ann. Stat. 22(4), 1701–1762 (1994). With discussion and a rejoinder by the authorGoogle Scholar
  69. 69.
    van der Meulen, F., Schauer, M.: Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals. Electron. J. Stat. 11(1), 2358–2396 (2017)MathSciNetzbMATHGoogle Scholar
  70. 70.
    van der Meulen, F., van Zanten, H.: Consistent nonparametric Bayesian inference for discretely observed scalar diffusions. Bernoulli 19(1), 44–63 (2013)MathSciNetzbMATHGoogle Scholar
  71. 71.
    van der Meulen, F., Schauer, M., van Zanten, H.: Reversible jump MCMC for nonparametric drift estimation for diffusion processes. Comput. Stat. Data Anal. 71, 615–632 (2014)MathSciNetzbMATHGoogle Scholar
  72. 72.
    van Zanten, H.: Nonparametric Bayesian methods for one-dimensional diffusion models. Math. Biosci. 243(2), 215–222 (2013)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Virtanen, T., Cemgil, A.T., Godsill, S.: Bayesian extensions to non-negative matrix factorisation for audio signal modelling. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1825–1828. IEEE, Las Vegas (2008)Google Scholar
  74. 74.
    Wasserman, L.: All of Nonparametric Statistics. Springer Texts in Statistics. Springer, New York (2006)Google Scholar
  75. 75.
    Wilkinson, D.J.: Metropolis Hastings MCMC when the proposal and target have differing support. https://darrenjw.wordpress.com/2012/06/04/metropolis-hastings-mcmc-when-the-proposal-and-target-have-differing-support/ (2012). Accessed 23 December 2017
  76. 76.
    Wong, E., Hajek, B.: Stochastic processes in engineering systems. Springer Texts in Electrical Engineering. Springer, New York (1985)Google Scholar
  77. 77.
    Yang, T.Y., Kuo, L.: Bayesian binary segmentation procedure for a Poisson process with multiple changepoints. J. Comput. Graph. Stat. 10(4), 772–785 (2001)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shota Gugushvili
    • 1
  • Frank van der Meulen
    • 2
  • Moritz Schauer
    • 1
  • Peter Spreij
    • 3
    • 4
    Email author
  1. 1.Mathematical InstituteLeiden UniversityLeidenThe Netherlands
  2. 2.Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer ScienceDelft University of TechnologyDelftThe Netherlands
  3. 3.Korteweg-de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Institute for Mathematics, Astrophysics and Particle PhysicsRadboud UniversityNijmegenThe Netherlands

Personalised recommendations