Advertisement

Viruses and Glioblastoma: Affliction or Opportunity?

  • Haidn Foster
  • Charles S. CobbsEmail author
Chapter
Part of the Current Cancer Research book series (CUCR)

Abstract

Herpesviruses, polyomaviruses, and papillomaviruses have all been detected in glioblastoma cells and/or cell lines. Our group first published evidence of human cytomegalovirus (CMV), a herpesvirus, in glioblastoma specimens from immunocompetent patients in 2002. However, the discovery of CMV and other viruses in glioblastoma has met with controversy following several studies that failed to detect viral particles in GBM. Here we summarize the known relationships between viruses and malignant gliomas, including viral detection in GBM, the oncomodulatory effects of GBM-associated viruses, and the novel ways by which investigators are targeting viruses for the treatment of glioblastoma.

Keywords

Cytomegalovirus Glioblastoma Herpesvirus Polyomavirus Papillomavirus 

Abbreviations (Laboratory assay abbreviations listed in Table 4.2)

BKV

B.K. virus

CNS

Central nervous system

CMV

Cytomegalovirus

DC

Dendritic cell

EBV

Epstein-Barr virus

GBM

Glioblastoma

HHV

Human herpesvirus

HPV

Human papillomavirus

IE

Immediate-early

JCV

John Cunningham virus

Tag

Large tumor antigen

MGMT

O6-Methylguanine-DNA-methyltransferase

pp

Phosphoprotein

PDGFRα

Platelet-derived growth factor receptor alpha

rGBM

Recurrent GBM

SV40

Simian virus 40

tag

Small tumor antigen

TMZ

Temozolomide

References

  1. 1.
    Zhang AS, Ostrom QT, Kruchko C, Rogers L, Peereboom DM, Barnholtz-Sloan JS (2016) Complete prevalence of malignant primary brain tumors registry data in the United States compared with other common cancers, 2010. Neuro-Oncology.  https://doi.org/10.1093/neuonc/now252
  2. 2.
    Stewart B, Wild CP (2014) World cancer report 2014Google Scholar
  3. 3.
    Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4(4):296–307.  https://doi.org/10.1038/nrc1319PubMedCrossRefGoogle Scholar
  4. 4.
    Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2016) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro-Oncology 18(suppl_5):v1–v75.  https://doi.org/10.1093/neuonc/now207PubMedCrossRefGoogle Scholar
  5. 5.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996.  https://doi.org/10.1056/NEJMoa043330PubMedCrossRefGoogle Scholar
  6. 6.
    Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118(12):3030–3044.  https://doi.org/10.1002/ijc.21731PubMedCrossRefGoogle Scholar
  7. 7.
    Cimino PJ, Zhao G, Wang D, Sehn JK, Lewis JS Jr, Duncavage EJ (2014) Detection of viral pathogens in high grade gliomas from unmapped next-generation sequencing data. Exp Mol Pathol 96(3):310–315.  https://doi.org/10.1016/j.yexmp.2014.03.010PubMedCrossRefGoogle Scholar
  8. 8.
    Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, Nabors LB, Cobbs CG, Britt WJ (2002) Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62(12):3347–3350PubMedGoogle Scholar
  9. 9.
    Lucas KG, Bao L, Bruggeman R, Dunham K, Specht C (2011) The detection of CMV pp65 and IE1 in glioblastoma multiforme. J Neuro-Oncol 103(2):231–238.  https://doi.org/10.1007/s11060-010-0383-6CrossRefGoogle Scholar
  10. 10.
    Rahbar A, Stragliotto G, Orrego A, Peredo I, Taher C, Willems J, Soderberg-Naucler C (2012) Low levels of human cytomegalovirus infection in glioblastoma multiforme associates with patient survival − a case-control study. Herpesviridae 3:3.  https://doi.org/10.1186/2042-4280-3-3PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Scheurer ME, Bondy ML, Aldape KD, Albrecht T, El-Zein R (2008) Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 116(1):79–86.  https://doi.org/10.1007/s00401-008-0359-1PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chi J, Gu B, Zhang C, Peng G, Zhou F, Chen Y, Zhang G, Guo Y, Guo D, Qin J, Wang J, Li L, Wang F, Liu G, Xie F, Feng D, Zhou H, Huang X, Lu S, Liu Y, Hu W, Yao K (2012) Human herpesvirus 6 latent infection in patients with glioma. J Infect Dis 206(9):1394–1398.  https://doi.org/10.1093/infdis/jis513PubMedCrossRefGoogle Scholar
  13. 13.
    Cuomo L, Trivedi P, Cardillo MR, Gagliardi FM, Vecchione A, Caruso R, Calogero A, Frati L, Faggioni A, Ragona G (2001) Human herpesvirus 6 infection in neoplastic and normal brain tissue. J Med Virol 63(1):45–51PubMedCrossRefGoogle Scholar
  14. 14.
    Luppi M, Barozzi P, Maiorana A, Marasca R, Trovato R, Fano R, Ceccherini-Nelli L, Torelli G (1995) Human herpesvirus-6: a survey of presence and distribution of genomic sequences in normal brain and neuroglial tumors. J Med Virol 47(1):105–111PubMedCrossRefGoogle Scholar
  15. 15.
    Caldarelli-Stefano R, Boldorini R, Monga G, Meraviglia E, Zorini EO, Ferrante P (2000) JC virus in human glial-derived tumors. Hum Pathol 31(3):394–395PubMedCrossRefGoogle Scholar
  16. 16.
    Huang H, Reis R, Yonekawa Y, Lopes JM, Kleihues P, Ohgaki H (1999) Identification in human brain tumors of DNA sequences specific for SV40 large T antigen. Brain Pathol 9(1):33–42PubMedCrossRefGoogle Scholar
  17. 17.
    Kouhata T, Fukuyama K, Hagihara N, Tabuchi K (2001) Detection of simian virus 40 DNA sequence in human primary glioblastomas multiforme. J Neurosurg 95(1):96–101.  https://doi.org/10.3171/jns.2001.95.1.0096PubMedCrossRefGoogle Scholar
  18. 18.
    Martini F, Iaccheri L, Lazzarin L, Carinci P, Corallini A, Gerosa M, Iuzzolino P, Barbanti-Brodano G, Tognon M (1996) SV40 early region and large T antigen in human brain tumors, peripheral blood cells, and sperm fluids from healthy individuals. Cancer Res 56(20):4820–4825PubMedGoogle Scholar
  19. 19.
    Rollison DE, Utaipat U, Ryschkewitsch C, Hou J, Goldthwaite P, Daniel R, Helzlsouer KJ, Burger PC, Shah KV, Major EO (2005) Investigation of human brain tumors for the presence of polyomavirus genome sequences by two independent laboratories. Int J Cancer 113(5):769–774.  https://doi.org/10.1002/ijc.20641PubMedCrossRefGoogle Scholar
  20. 20.
    Boldorini R, Pagani E, Car PG, Omodeo-Zorini E, Borghi E, Tarantini L, Bellotti C, Ferrante P, Monga G (2003) Molecular characterisation of JC virus strains detected in human brain tumours. Pathology 35(3):248–253PubMedCrossRefGoogle Scholar
  21. 21.
    Del Valle L, Gordon J, Assimakopoulou M, Enam S, Geddes JF, Varakis JN, Katsetos CD, Croul S, Khalili K (2001) Detection of JC virus DNA sequences and expression of the viral regulatory protein T-antigen in tumors of the central nervous system. Cancer Res 61(10):4287–4293PubMedGoogle Scholar
  22. 22.
    Munoz-Marmol AM, Mola G, Ruiz-Larroya T, Fernandez-Vasalo A, Vela E, Mate JL, Ariza A (2006) Rarity of JC virus DNA sequences and early proteins in human gliomas and medulloblastomas: the controversial role of JC virus in human neurooncogenesis. Neuropathol Appl Neurobiol 32(2):131–140.  https://doi.org/10.1111/j.1365-2990.2006.00711.xPubMedCrossRefGoogle Scholar
  23. 23.
    Corallini A, Pagnani M, Viadana P, Silini E, Mottes M, Milanesi G, Gerna G, Vettor R, Trapella G, Silvani V et al (1987) Association of BK virus with human brain tumors and tumors of pancreatic islets. Int J Cancer 39(1):60–67PubMedCrossRefGoogle Scholar
  24. 24.
    Negrini M, Rimessi P, Mantovani C, Sabbioni S, Corallini A, Gerosa MA, Barbanti-Brodano G (1990) Characterization of BK virus variants rescued from human tumours and tumour cell lines. J Gen Virol 71(Pt 11):2731–2736.  https://doi.org/10.1099/0022-1317-71-11-2731PubMedCrossRefGoogle Scholar
  25. 25.
    Cohen JI, Fauci AS, Varmus H, Nabel GJ (2011) Epstein-Barr virus: an important vaccine target for cancer prevention. Sci Transl Med 3(107):107fs107.  https://doi.org/10.1126/scitranslmed.3002878CrossRefGoogle Scholar
  26. 26.
    Bate SL, Dollard SC, Cannon MJ (2010) Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988–2004. Clin Infect Dis 50(11):1439–1447.  https://doi.org/10.1086/652438PubMedCrossRefGoogle Scholar
  27. 27.
    Sinclair J, Sissons P (2006) Latency and reactivation of human cytomegalovirus. J Gen Virol 87(Pt 7):1763–1779.  https://doi.org/10.1099/vir.0.81891-0PubMedCrossRefGoogle Scholar
  28. 28.
    Bianchi E, Roncarati P, Hougrand O, Guerin-El Khourouj V, Boreux R, Kroonen J, Martin D, Robe P, Rogister B, Delvenne P, Deprez M (2015) Human cytomegalovirus and primary intracranial tumours: frequency of tumour infection and lack of correlation with systemic immune anti-viral responses. Neuropathol Appl Neurobiol 41(2):e29–e40.  https://doi.org/10.1111/nan.12172PubMedCrossRefGoogle Scholar
  29. 29.
    Harkins L, Volk AL, Samanta M, Mikolaenko I, Britt WJ, Bland KI, Cobbs CS (2002) Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 360(9345):1557–1563.  https://doi.org/10.1016/S0140-6736(02)11524-8PubMedCrossRefGoogle Scholar
  30. 30.
    Samanta M, Harkins L, Klemm K, Britt WJ, Cobbs CS (2003) High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 170(3):998–1002.  https://doi.org/10.1097/01.ju.0000080263.46164.97PubMedCrossRefGoogle Scholar
  31. 31.
    Zafiropoulos A, Tsentelierou E, Billiri K, Spandidos DA (2003) Human herpes viruses in non-melanoma skin cancers. Cancer Lett 198(1):77–81PubMedCrossRefGoogle Scholar
  32. 32.
    Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, McLendon RE, Sampson JH (2008) Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-Oncology 10(1):10–18.  https://doi.org/10.1215/15228517-2007-035PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Rahbar A, Orrego A, Peredo I, Dzabic M, Wolmer-Solberg N, Straat K, Stragliotto G, Soderberg-Naucler C (2013) Human cytomegalovirus infection levels in glioblastoma multiforme are of prognostic value for survival. J Clin Virol 57(1):36–42.  https://doi.org/10.1016/j.jcv.2012.12.018PubMedCrossRefGoogle Scholar
  34. 34.
    Baumgarten P, Michaelis M, Rothweiler F, Starzetz T, Rabenau HF, Berger A, Jennewein L, Braczynski AK, Franz K, Seifert V, Steinbach JP, Allwinn R, Mittelbronn M, Cinatl J Jr (2014) Human cytomegalovirus infection in tumor cells of the nervous system is not detectable with standardized pathologico-virological diagnostics. Neuro-Oncology 16(11):1469–1477.  https://doi.org/10.1093/neuonc/nou167PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Holdhoff M, Guner G, Rodriguez FJ, Hicks JL, Zheng Q, Forman MS, Ye X, Grossman SA, Meeker AK, Heaphy CM, Eberhart CG, De Marzo AM, Arav-Boger R (2016) Absence of cytomegalovirus in glioblastoma and other high-grade gliomas by real-time PCR, immunohistochemistry, and in situ hybridization. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.CCR-16-1490PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Strong MJ, Et B, Lin Z, Morris CA, Baddoo M, Taylor CM, Ware ML, Flemington EK (2016) A comprehensive next generation sequencing-based virome assessment in brain tissue suggests no major virus – tumor association. Acta Neuropathol Commun 4(1):71.  https://doi.org/10.1186/s40478-016-0338-zPubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ablashi DV, Lusso P, Hung CL, Salahuddin SZ, Josephs SF, Llana T, Kramarsky B, Biberfeld P, Markham PD, Gallo RC (1988) Utilization of human hematopoietic cell lines for the propagation and characterization of HBLV (human herpesvirus 6). Int J Cancer 42(5):787–791PubMedCrossRefGoogle Scholar
  38. 38.
    Levy JA, Ferro F, Lennette ET, Oshiro L, Poulin L (1990) Characterization of a new strain of HHV-6 (HHV-6SF) recovered from the saliva of an HIV-infected individual. Virology 178(1):113–121PubMedCrossRefGoogle Scholar
  39. 39.
    Tedder RS, Briggs M, Cameron CH, Honess R, Robertson D, Whittle H (1987) A novel lymphotropic herpesvirus. Lancet 2(8555):390–392PubMedCrossRefGoogle Scholar
  40. 40.
    Crawford JR, Santi MR, Cornelison R, Sallinen SL, Haapasalo H, MacDonald TJ (2009) Detection of human herpesvirus-6 in adult central nervous system tumors: predominance of early and late viral antigens in glial tumors. J Neuro-Oncol 95(1):49–60.  https://doi.org/10.1007/s11060-009-9908-2CrossRefGoogle Scholar
  41. 41.
    Colvin EK, Weir C, Ikin RJ, Hudson AL (2014) SV40 TAg mouse models of cancer. Semin Cell Dev Biol 27:61–73.  https://doi.org/10.1016/j.semcdb.2014.02.004PubMedCrossRefGoogle Scholar
  42. 42.
    Kirschstein RL, Gerber P (1962) Ependymomas produced after intracerebral inoculation of SV40 into new-born hamsters. Nature 195:299–300PubMedCrossRefGoogle Scholar
  43. 43.
    Ray FA, Peabody DS, Cooper JL, Cram LS, Kraemer PM (1990) SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts. J Cell Biochem 42(1):13–31.  https://doi.org/10.1002/jcb.240420103PubMedCrossRefGoogle Scholar
  44. 44.
    Engels EA, Katki HA, Nielsen NM, Winther JF, Hjalgrim H, Gjerris F, Rosenberg PS, Frisch M (2003) Cancer incidence in Denmark following exposure to poliovirus vaccine contaminated with simian virus 40. J Natl Cancer Inst 95(7):532–539PubMedCrossRefGoogle Scholar
  45. 45.
    Fisher SG, Weber L, Carbone M (1999) Cancer risk associated with simian virus 40 contaminated polio vaccine. Anticancer Res 19(3B):2173–2180PubMedGoogle Scholar
  46. 46.
    Vilchez RA, Kozinetz CA, Arrington AS, Madden CR, Butel JS (2003) Simian virus 40 in human cancers. Am J Med 114(8):675–684PubMedCrossRefGoogle Scholar
  47. 47.
    Scherneck S, Rudolph M, Geissler E, Vogel F, Lubbe L, Wahlte H, Nisch G, Weickmann F, Zimmermann W (1979) Isolation of a SV40-like Papovavirus from a human glioblastoma. Int J Cancer 24(5):523–531PubMedCrossRefGoogle Scholar
  48. 48.
    Suzuki SO, Mizoguchi M, Iwaki T (1997) Detection of SV40 T antigen genome in human gliomas. Brain Tumor Pathol 14(2):125–129PubMedCrossRefGoogle Scholar
  49. 49.
    Shah K (1996) Polyomaviruses. Fields Virol 2:2027–2043Google Scholar
  50. 50.
    Gordon J, Krynska B, Otte J, Houff SA, Khalili K (1998) Oncogenic potential of human neurotropic papovavirus, JCV, in CNS. Dev Biol Stand 94:93–101PubMedGoogle Scholar
  51. 51.
    Darbinyan A, Kaminski R, White MK, Darbinian-Sarkissian N, Khalili K (2013) Polyomavirus JC infection inhibits differentiation of oligodendrocyte progenitor cells. J Neurosci Res 91(1):116–127.  https://doi.org/10.1002/jnr.23135PubMedCrossRefGoogle Scholar
  52. 52.
    Wuthrich C, Batson S, Anderson MP, White LR, Koralnik IJ (2016) JC Virus infects neurons and glial cells in the hippocampus. J Neuropathol Exp Neurol.  https://doi.org/10.1093/jnen/nlw050CrossRefGoogle Scholar
  53. 53.
    Imperiale MJ (2000) The human polyomaviruses, BKV and JCV: molecular pathogenesis of acute disease and potential role in cancer. Virology 267(1):1–7.  https://doi.org/10.1006/viro.1999.0092PubMedCrossRefGoogle Scholar
  54. 54.
    Pina-Oviedo S, De Leon-Bojorge B, Cuesta-Mejias T, White MK, Ortiz-Hidalgo C, Khalili K, Del Valle L (2006) Glioblastoma multiforme with small cell neuronal-like component: association with human neurotropic JC virus. Acta Neuropathol 111(4):388–396.  https://doi.org/10.1007/s00401-006-0050-3PubMedCrossRefGoogle Scholar
  55. 55.
    Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19.  https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-FPubMedCrossRefGoogle Scholar
  56. 56.
    Vidone M, Alessandrini F, Marucci G, Farnedi A, de Biase D, Ricceri F, Calabrese C, Kurelac I, Porcelli AM, Cricca M, Gasparre G (2014) Evidence of association of human papillomavirus with prognosis worsening in glioblastoma multiforme. Neuro-Oncology 16(2):298–302.  https://doi.org/10.1093/neuonc/not140PubMedCrossRefGoogle Scholar
  57. 57.
    Varakis J, ZuRhein GM, Padgett BL, Walker DL (1978) Induction of peripheral neuroblastomas in Syrian hamsters after injection as neonates with JC virus, a human polyoma virus. Cancer Res 38(6):1718–1722PubMedGoogle Scholar
  58. 58.
    Walker DL, Padgett BL, ZuRhein GM, Albert AE, Marsh RF (1973) Human papovavirus (JC): induction of brain tumors in hamsters. Science 181(4100):674–676PubMedCrossRefGoogle Scholar
  59. 59.
    Darbinian N, Gallia GL, King J, Del Valle L, Johnson EM, Khalili K (2001) Growth inhibition of glioblastoma cells by human Pur(alpha). J Cell Physiol 189(3):334–340.  https://doi.org/10.1002/jcp.10029PubMedCrossRefGoogle Scholar
  60. 60.
    Dyson N, Bernards R, Friend SH, Gooding LR, Hassell JA, Major EO, Pipas JM, Vandyke T, Harlow E (1990) Large T antigens of many polyomaviruses are able to form complexes with the retinoblastoma protein. J Virol 64(3):1353–1356PubMedPubMedCentralGoogle Scholar
  61. 61.
    Dyson N, Buchkovich K, Whyte P, Harlow E (1989) The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 58(2):249–255PubMedCrossRefGoogle Scholar
  62. 62.
    Harris KF, Christensen JB, Imperiale MJ (1996) BK virus large T antigen: interactions with the retinoblastoma family of tumor suppressor proteins and effects on cellular growth control. J Virol 70(4):2378–2386PubMedPubMedCentralGoogle Scholar
  63. 63.
    Pipas JM (1992) Common and unique features of T antigens encoded by the polyomavirus group. J Virol 66(7):3979–3985PubMedPubMedCentralGoogle Scholar
  64. 64.
    Sariyer IK, Sariyer R, Otte J, Gordon J (2016) Pur-alpha induces JCV gene expression and viral replication by suppressing SRSF1 in glial cells. PLoS One 11(6):e0156819.  https://doi.org/10.1371/journal.pone.0156819PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sullivan CS, Tremblay JD, Fewell SW, Lewis JA, Brodsky JL, Pipas JM (2000) Species-specific elements in the large T-antigen J domain are required for cellular transformation and DNA replication by simian virus 40. Mol Cell Biol 20(15):5749–5757PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Stewart N, Bacchetti S (1991) Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 180(1):49–57PubMedCrossRefGoogle Scholar
  67. 67.
    Trabanelli C, Corallini A, Gruppioni R, Sensi A, Bonfatti A, Campioni D, Merlin M, Calza N, Possati L, Barbanti-Brodano G (1998) Chromosomal aberrations induced by BK virus T antigen in human fibroblasts. Virology 243(2):492–496.  https://doi.org/10.1006/viro.1998.9080PubMedCrossRefGoogle Scholar
  68. 68.
    Khalili K, Del Valle L, Otte J, Weaver M, Gordon J (2003) Human neurotropic polyomavirus, JCV, and its role in carcinogenesis. Oncogene 22(33):5181–5191.  https://doi.org/10.1038/sj.onc.1206559PubMedCrossRefGoogle Scholar
  69. 69.
    Kashanchi F, Araujo J, Doniger J, Muralidhar S, Hoch R, Khleif S, Mendelson E, Thompson J, Azumi N, Brady JN, Luppi M, Torelli G, Rosenthal LJ (1997) Human herpesvirus 6 (HHV-6) ORF-1 transactivating gene exhibits malignant transforming activity and its protein binds to p53. Oncogene 14(3):359–367.  https://doi.org/10.1038/sj.onc.1200840PubMedCrossRefGoogle Scholar
  70. 70.
    Wang X, Hu M, Xing F, Wang M, Wang B, Qian D (2017) Human cytomegalovirus infection promotes the stemness of U251 glioma cells. J Med Virol 89(5):878–886.  https://doi.org/10.1002/jmv.24708PubMedCrossRefGoogle Scholar
  71. 71.
    Cobbs CS, Soroceanu L, Denham S, Zhang W, Kraus MH (2008) Modulation of oncogenic phenotype in human glioma cells by cytomegalovirus IE1-mediated mitogenicity. Cancer Res 68(3):724–730.  https://doi.org/10.1158/0008-5472.CAN-07-2291PubMedCrossRefGoogle Scholar
  72. 72.
    Lee K, Jeon K, Kim JM, Kim VN, Choi DH, Kim SU, Kim S (2005) Downregulation of GFAP, TSP-1, and p53 in human glioblastoma cell line, U373MG, by IE1 protein from human cytomegalovirus. Glia 51(1):1–12.  https://doi.org/10.1002/glia.20179PubMedCrossRefGoogle Scholar
  73. 73.
    Soroceanu L, Matlaf L, Khan S, Akhavan A, Singer E, Bezrookove V, Decker S, Ghanny S, Hadaczek P, Bengtsson H, Ohlfest J, Luciani-Torres MG, Harkins L, Perry A, Guo H, Soteropoulos P, Cobbs CS (2015) Cytomegalovirus immediate-early proteins promote stemness properties in glioblastoma. Cancer Res 75(15):3065–3076.  https://doi.org/10.1158/0008-5472.CAN-14-3307PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Fornara O, Bartek J Jr, Rahbar A, Odeberg J, Khan Z, Peredo I, Hamerlik P, Bartek J, Stragliotto G, Landazuri N, Soderberg-Naucler C (2016) Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells: prognostic significance and biological impact. Cell Death Differ 23(2):261–269.  https://doi.org/10.1038/cdd.2015.91PubMedCrossRefGoogle Scholar
  75. 75.
    Matlaf LA, Harkins LE, Bezrookove V, Cobbs CS, Soroceanu L (2013) Cytomegalovirus pp71 protein is expressed in human glioblastoma and promotes pro-angiogenic signaling by activation of stem cell factor. PLoS One 8(7):e68176.  https://doi.org/10.1371/journal.pone.0068176PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    MacManiman JD, Meuser A, Botto S, Smith PP, Liu F, Jarvis MA, Nelson JA, Caposio P (2014) Human cytomegalovirus-encoded pUL7 is a novel CEACAM1-like molecule responsible for promotion of angiogenesis. MBio 5(6):e02035.  https://doi.org/10.1128/mBio.02035-14PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Soroceanu L, Matlaf L, Bezrookove V, Harkins L, Martinez R, Greene M, Soteropoulos P, Cobbs CS (2011) Human cytomegalovirus US28 found in glioblastoma promotes an invasive and angiogenic phenotype. Cancer Res 71(21):6643–6653.  https://doi.org/10.1158/0008-5472.CAN-11-0744PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ulasov IV, Kaverina NV, Ghosh D, Baryshnikova MA, Kadagidze ZG, Karseladze AI, Baryshnikov AY, Cobbs CS (2017) CMV70-3P miRNA contributes to the CMV mediated glioma stemness and represents a target for glioma experimental therapy. Oncotarget 8(16):25989–25999.  https://doi.org/10.18632/oncotarget.11175PubMedCrossRefGoogle Scholar
  79. 79.
    Cobbs C, Khan S, Matlaf L, McAllister S, Zider A, Yount G, Rahlin K, Harkins L, Bezrookove V, Singer E, Soroceanu L (2014) HCMV glycoprotein B is expressed in primary glioblastomas and enhances growth and invasiveness via PDGFR-alpha activation. Oncotarget 5(4):1091–1100.  https://doi.org/10.18632/oncotarget.1787PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51(2):187–199.  https://doi.org/10.1016/j.neuron.2006.06.012CrossRefPubMedGoogle Scholar
  81. 81.
    Moens U, Van Ghelue M, Ehlers B (2014) Are human polyomaviruses co-factors for cancers induced by other oncoviruses? Rev Med Virol 24(5):343–360.  https://doi.org/10.1002/rmv.1798PubMedCrossRefGoogle Scholar
  82. 82.
    Gorman CM, Gies D, McCray G, Huang M (1989) The human cytomegalovirus major immediate early promoter can be trans-activated by adenovirus early proteins. Virology 171(2):377–385PubMedCrossRefGoogle Scholar
  83. 83.
    Yoshikawa T, Asano Y, Akimoto S, Ozaki T, Iwasaki T, Kurata T, Goshima F, Nishiyama Y (2002) Latent infection of human herpesvirus 6 in astrocytoma cell line and alteration of cytokine synthesis. J Med Virol 66(4):497–505PubMedCrossRefGoogle Scholar
  84. 84.
    Winklhofer KF, Albrecht I, Wegner M, Heilbronn R (2000) Human cytomegalovirus immediate-early gene 2 expression leads to JCV replication in nonpermissive cells via transcriptional activation of JCV T antigen. Virology 275(2):323–334.  https://doi.org/10.1006/viro.2000.0503PubMedCrossRefGoogle Scholar
  85. 85.
    Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3):211–217.  https://doi.org/10.1016/j.ccr.2005.02.013PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rakoff-Nahoum S (2006) Why cancer and inflammation? Yale. J Biol Med 79(3–4):123–130Google Scholar
  87. 87.
    Smith PD, Saini SS, Raffeld M, Manischewitz JF, Wahl SM (1992) Cytomegalovirus induction of tumor necrosis factor-alpha by human monocytes and mucosal macrophages. J Clin Invest 90(5):1642–1648.  https://doi.org/10.1172/JCI116035PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Avdic S, McSharry BP, Steain M, Poole E, Sinclair J, Abendroth A, Slobedman B (2016) Human cytomegalovirus-encoded human interleukin-10 (IL-10) homolog amplifies its immunomodulatory potential by upregulating human IL-10 in monocytes. J Virol 90(8):3819–3827.  https://doi.org/10.1128/JVI.03066-15PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT (2013) Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res 19(12):3165–3175.  https://doi.org/10.1158/1078-0432.CCR-12-3314PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Dziurzynski K, Wei J, Qiao W, Hatiboglu MA, Kong LY, Wu A, Wang Y, Cahill D, Levine N, Prabhu S, Rao G, Sawaya R, Heimberger AB (2011) Glioma-associated cytomegalovirus mediates subversion of the monocyte lineage to a tumor propagating phenotype. Clin Cancer Res 17(14):4642–4649.  https://doi.org/10.1158/1078-0432.CCR-11-0414PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Huettner C, Czub S, Kerkau S, Roggendorf W, Tonn JC (1997) Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res 17(5A):3217–3224PubMedGoogle Scholar
  92. 92.
    Spencer JV, Lockridge KM, Barry PA, Lin G, Tsang M, Penfold ME, Schall TJ (2002) Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 76(3):1285–1292PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Farrell HE, Vally H, Lynch DM, Fleming P, Shellam GR, Scalzo AA, Davis-Poynter NJ (1997) Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 386(6624):510–514.  https://doi.org/10.1038/386510a0CrossRefPubMedGoogle Scholar
  94. 94.
    Hegde NR, Tomazin RA, Wisner TW, Dunn C, Boname JM, Lewinsohn DM, Johnson DC (2002) Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: a novel mechanism for evading major histocompatibility complex class II antigen presentation. J Virol 76(21):10929–10941PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Odeberg J, Plachter B, Branden L, Soderberg-Naucler C (2003) Human cytomegalovirus protein pp65 mediates accumulation of HLA-DR in lysosomes and destruction of the HLA-DR alpha-chain. Blood 101(12):4870–4877.  https://doi.org/10.1182/blood-2002-05-1504PubMedCrossRefGoogle Scholar
  96. 96.
    Tomazin R, Boname J, Hegde NR, Lewinsohn DM, Altschuler Y, Jones TR, Cresswell P, Nelson JA, Riddell SR, Johnson DC (1999) Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nat Med 5(9):1039–1043.  https://doi.org/10.1038/12478PubMedCrossRefGoogle Scholar
  97. 97.
    Li L, Chi J, Zhou F, Guo D, Wang F, Liu G, Zhang C, Yao K (2010) Human herpesvirus 6A induces apoptosis of HSB-2 cells via a mitochondrion-related caspase pathway. J Biomed Res 24(6):444–451.  https://doi.org/10.1016/S1674-8301(10)60059-0PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Wang F, Yao K, Yin QZ, Zhou F, Ding CL, Peng GY, Xu J, Chen Y, Feng DJ, Ma CL, Xu WR (2006) Human herpesvirus-6-specific interleukin 10-producing CD4+ T cells suppress the CD4+ T-cell response in infected individuals. Microbiol Immunol 50(10):787–803PubMedCrossRefGoogle Scholar
  99. 99.
    Hadaczek P, Ozawa T, Soroceanu L, Yoshida Y, Matlaf L, Singer E, Fiallos E, James CD, Cobbs CS (2013) Cidofovir: a novel antitumor agent for glioblastoma. Clin Cancer Res 19(23):6473–6483.  https://doi.org/10.1158/1078-0432.CCR-13-1121PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Stragliotto G, Rahbar A, Solberg NW, Lilja A, Taher C, Orrego A, Bjurman B, Tammik C, Skarman P, Peredo I, Soderberg-Naucler C (2013) Effects of valganciclovir as an add-on therapy in patients with cytomegalovirus-positive glioblastoma: a randomized, double-blind, hypothesis-generating study. Int J Cancer 133(5):1204–1213.  https://doi.org/10.1002/ijc.28111PubMedCrossRefGoogle Scholar
  101. 101.
    Liu CJ, Hu YW (2014) Immortal time bias in retrospective analysis: is there a survival benefit in patients with glioblastoma who received prolonged treatment of adjuvant valganciclovir? Int J Cancer 135(1):250–251.  https://doi.org/10.1002/ijc.28664PubMedCrossRefGoogle Scholar
  102. 102.
    Soderberg-Naucler C, Peredo I, Rahbar A, Hansson F, Nordlund A, Stragliotto G (2014) Use of Cox regression with treatment status as a time-dependent covariate to re-analyze survival benefit excludes immortal time bias effect in patients with glioblastoma who received prolonged adjuvant treatment with valganciclovir. Int J Cancer 135(1):248–249.  https://doi.org/10.1002/ijc.28663PubMedCrossRefGoogle Scholar
  103. 103.
    Ghazi A, Ashoori A, Hanley PJ, Brawley VS, Shaffer DR, Kew Y, Powell SZ, Grossman R, Grada Z, Scheurer ME, Hegde M, Leen AM, Bollard CM, Rooney CM, Heslop HE, Gottschalk S, Ahmed N (2012) Generation of polyclonal CMV-specific T cells for the adoptive immunotherapy of glioblastoma. J Immunother 35(2):159–168.  https://doi.org/10.1097/CJI.0b013e318247642fPubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Nair SK, De Leon G, Boczkowski D, Schmittling R, Xie W, Staats J, Liu R, Johnson LA, Weinhold K, Archer GE, Sampson JH, Mitchell DA (2014) Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin Cancer Res 20(10):2684–2694.  https://doi.org/10.1158/1078-0432.CCR-13-3268PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Batich KA, Reap EA, Archer GE, Sanchez-Perez L, Nair SK, Schmittling RJ, Norberg P, Xie W, Herndon JE II, Healy P, McLendon RE, Friedman AH, Friedman HS, Bigner D, Vlahovic G, Mitchell DA, Sampson JH (2017) Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin Cancer Res 23(8):1898–1909.  https://doi.org/10.1158/1078-0432.CCR-16-2057PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, Congdon KL, Reap EA, Archer GE, Desjardins A, Friedman AH, Friedman HS, Herndon JE II, Coan A, McLendon RE, Reardon DA, Vredenburgh JJ, Bigner DD, Sampson JH (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519(7543):366–369.  https://doi.org/10.1038/nature14320PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Crough T, Beagley L, Smith C, Jones L, Walker DG, Khanna R (2012) Ex vivo functional analysis, expansion and adoptive transfer of cytomegalovirus-specific T-cells in patients with glioblastoma multiforme. Immunol Cell Biol 90(9):872–880.  https://doi.org/10.1038/icb.2012.19PubMedCrossRefGoogle Scholar
  108. 108.
    Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, Jones L, Crough T, Dasari V, Klein K, Smalley A, Alexander H, Walker DG, Khanna R (2014) Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res 74(13):3466–3476.  https://doi.org/10.1158/0008-5472.CAN-14-0296PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Swedish Neuroscience InstituteCenter for Advanced Brain Tumor TreatmentSeattleUSA
  2. 2.University of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations