Advertisement

A Hybrid Approach for Image Segmentation in the IoT Era

  • Tallha AkramEmail author
  • Syed Rameez Naqvi
  • Sajjad Ali Haider
  • Nadia Nawaz Qadri
Chapter
Part of the Transactions on Computational Science and Computational Intelligence book series (TRACOSCI)

Abstract

Spectral clustering is a class of graph theoretic procedure, which is popular for finding natural groupings. Over the last decade, it has become a widely adopted tool – utilized in solving image segmentation problems, via normalized cut (NCut) methodology. Few challenges faced by image segmentation based on spectral clustering include its inability of processing large images due to high computational cost and memory requirements and its sensitivity to irrelevant and noisy data. This chapter presents an unsupervised image segmentation technique using spectral clustering, aimed at salient object detection, followed by extraction. The presented technique addresses all of the aforementioned challenges by means of a weighted binary tree-based fast spectral clustering (WBTFSC). The algorithm integrates dimensionality reduction with spectral clustering by introducing an effective preprocessor, comprising two fundamental steps of color quantization and unique pixels selection. The experiments, performed on color images using the proposed algorithm, show improved performance in extracting objects of interest with high accuracy. We also test the algorithm on several noisy images; the obtained results reveal better performance in comparison to few existing techniques.

Keywords

Spectral clustering Binary partition tree Object of interest detection Noise removal 

References

  1. 1.
    Al-Turjman, F. (2018). QoS–aware data delivery framework for safety-inspired multimedia in integrated vehicular-IoT. Elsevier Computer Communications Journal, 121, 33–43.CrossRefGoogle Scholar
  2. 2.
    Al-Turjman, F., & Alturjman, S. (2018). 5G/IoT-enabled UAVs for multimedia delivery in industry-oriented applications. Multimedia Tools and Applications, Springer. https://doi.org/10.1007/s11042-018-6288-7.
  3. 3.
    Alabady, S., & Al-Turjman, F. (2018). A novel approach for error detection and correction for efficient energy in wireless networks. Springer Multimedia Tools and Applications. https://doi.org/10.1007/s11042-018-6282-0.CrossRefGoogle Scholar
  4. 4.
    Hasan, M. Z., & Al-Turjman, F. (2018). Analysis of cross-layer design of quality-of-service forward geographic wireless sensor network routing strategies in green internet of things. IEEE Access Journal, 6(1), 20371–20389.CrossRefGoogle Scholar
  5. 5.
    Al-Turjman, F., & Alturjman, S. (2018). Confidential smart-sensing framework in the IoT era. The Springer Journal of Supercomputing. https://doi.org/10.1007/s11227-018-2524-1.CrossRefGoogle Scholar
  6. 6.
    TongKe, F. (2013). Smart agriculture based on cloud computing and IOT. Journal of Convergence Information Technology., 8(2), 210–216.CrossRefGoogle Scholar
  7. 7.
    Bhatt, C., Dey, N., & Ashour, A. S. (Eds.). (2017). Internet of things and big data technologies for next generation healthcare (pp. 978–973). Cham: Springer.Google Scholar
  8. 8.
    Han Zou, Yuxun Zhou, Jianfei Yang, Costas J. Spanos, “Device-free occupancy detection and crowd counting in smart buildings with WiFi-enabled IoT”, Energy and Buildings, V(174), 309–322, 2018.Google Scholar
  9. 9.
    Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis and algorithm [C]. NIPS.Google Scholar
  10. 10.
    Hartmann, S. L., & Galloway, R. L. (2000). Depth-buffer targeting for spatially accurate 3-D visualization [J], medical images. IEEE Transactions on Medical Imaging, 19(10), 1024–1031.CrossRefGoogle Scholar
  11. 11.
    Lei, T., & Sewchand, W. (2001). Object detection and recognition via stochastic model-based image segmentation [C]. IEEE Multidimensional Signal Processing Workshop, 2001, Sixth, pp. 17–18.Google Scholar
  12. 12.
    Yixin Chen, J. (2002). A region based fuzzy feature matching a roach to content-based image retrieval [J]. IEEE Transactions on Fuzzy Systems, 24(9), 1252–1267.Google Scholar
  13. 13.
    Liu, Z., Shen, L., & Zhang, Z. (2011). Unsupervised image segmentation based on analysis of binary partition tree for salient object extraction [J]. Signal Processing, 91(2), 290–299.zbMATHCrossRefGoogle Scholar
  14. 14.
    Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004). Spectral grouping using the Nystrom method [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 26(2), 214–225.CrossRefGoogle Scholar
  15. 15.
    Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.CrossRefGoogle Scholar
  16. 16.
    Mohanta, P. P., Mukherjee, D. P., & ST, A. (2002). Agglomerative clustering for image segmentation [C]. IEEE International Conference on Pattern Recognition, 1, 664–667.CrossRefGoogle Scholar
  17. 17.
    Zhao, P., & Zhang, C. Q. (2011). A new clustering method and its a lication in social networks [J]. Pattern Recognition Letters, 32(15), 2109–2118.CrossRefGoogle Scholar
  18. 18.
    Hendrickson, B., & Leland, R.(1995). A multilevel algorithm for partitioning graphs [C]. IEEE Conference on SuperComputing.Google Scholar
  19. 19.
    Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 79, 57–70.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRefGoogle Scholar
  21. 21.
    Yan, D., Huang, L., & Jordan, M. (2009). Fast a roximate spectral clustering [R]: Technical report UCB/EECS]-2009-45.Google Scholar
  22. 22.
    Ducournau, A., Bretto, A., Rital, S., & Laget, B. (2012). A reductive a roach to hypergraph clustering: An a lication to image segmentation [J]. Pattern Recognition, 45(7), 2788–2803.zbMATHCrossRefGoogle Scholar
  23. 23.
    Tung, F., Wong, A., & Clausi, D. A. (2010). Enabling scalable spectral clustering for image segmentation [J]. Pattern Recognition, 23, 4069–4076.zbMATHCrossRefGoogle Scholar
  24. 24.
    Gao, H., Mei, J., & Si, Y. (2013). A curve evolution a roach for unsupervised segmentation of images with low depth of field [J]. IEEE Transaction in Image Processing, 22(10), 4086–4095.zbMATHCrossRefGoogle Scholar
  25. 25.
    Harel, J., Koch, C., & Perona, P. (2006). Graph-based visual saliency [J]. Advances in Neural Information Processing Systems, 19, 545–552.Google Scholar
  26. 26.
    Tasdemir, K. (2010). Vector quantization based on proximate spectral clustering of large datasets [J]. Pattern Recognition, 45(8), 3034–3044.CrossRefGoogle Scholar
  27. 27.
    Zhang, K., Tsang I. W., & Kwok, J. T. (2008) Improved Nystrom low-rank a roximation and error analysis [C]. International Conference on Machine Learning. ICML (pp. 1232–1239).Google Scholar
  28. 28.
    Goferman, S., Zelnik-Manor, L., & Tal, A. (2010). Context-aware saliency detection [C]. In Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., 2010, pp. 2376–2383.Google Scholar
  29. 29.
    Cheng, M. M., Zhang, G. X., Mitra, N. J., & Huang, X. (2011). Global contrast based salient region detection [C]. In IEEE Conference on Computer Vision and Pattern Recognition, June 20, 2011.Google Scholar
  30. 30.
    Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001) On spectral clustering: Ananlysis and an algorithm [J]. Advance in Neural Information Processing Systems, 849–856.Google Scholar
  31. 31.
    L.Z. Manor, & P. Perona. (2004). Self tuning spectral clustering [J]. Advance in Neural Information Processing Systems (pp. 1601–1608).Google Scholar
  32. 32.
    Luxburg, U. (2007). A tutorial on spectral clustering [J]. Journal of Statistics and Computing, 17(4), 395–416.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ge, F., Wang, S., & Liu, T. (2007). New benchmark for image segmentation evaluation [J]. Journal of Electronic Imaging, 16(3), 033011.CrossRefGoogle Scholar
  34. 34.
    Clinton, N., Holt, A., & Gong, P. (2010). Accuracy assessment measures for object-based image segmentation goodness [J]. Photogrammetric Engineering & Remote Sensing, 76(3), 289–299.CrossRefGoogle Scholar
  35. 35.
    Duan, Q., Akram, T., Duan, P., & Wang, X. (2016). Visual saliency detection using information contents weighting. Optik-International Journal for Light and Electron Optics, Elsevier, 127(19), 7418–7430.CrossRefGoogle Scholar
  36. 36.
    Khan, Z. U., Akram, T., Naqvi, S. R., Haider, S. A., Kamran, M., & Muhammad, N. (2018). Automatic detection of plant diseases; utilizing an unsupervised cascaded design. (IBCAST), Islamabad, pp. 339–346, 3028.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tallha Akram
    • 1
    Email author
  • Syed Rameez Naqvi
    • 1
  • Sajjad Ali Haider
    • 1
  • Nadia Nawaz Qadri
    • 1
  1. 1.Department of Electrical and Computer EngineeringCOMSATS UniversityIslamabadPakistan

Personalised recommendations