Advertisement

Intelligent IoT Communication in Smart Environments: An Overview

  • Joel Poncha Lemayian
  • Fadi Al-TurjmanEmail author
Chapter
Part of the Transactions on Computational Science and Computational Intelligence book series (TRACOSCI)

Abstract

“Internet of Things” (IoT) is expected to revolutionize the application of services by enabling the creation of smart spaces such as smart cities, smart houses, smart transportation, and smart outdoor monitoring (SOM) in the near future. Such smart spaces will require the deployment of a significantly large numbers of devices connected to the Internet such as sensors, actuators, and wearable computing devices and the likes. The growing population in urban areas will pose a significant challenge toward the utilization of public resources. Smart cities provide a promising solution by enabling a smart and efficient way to handle challenges such as waste management, traffic, security, and so on. Consequently, there is a large number of devices deployed in a smart city so as to enable collection and transition of data and data analysis. Therefore, communication is a key aspect in a smart city topology. In this work, we provide an overview about how the IoT provides an efficient communication platform and how 5G will be the main enabler by providing competitive bandwidth, high integrity, low latency, high spectral efficiency, and viable network capacity.

Keywords

5G Internet of Things Smart city 

References

  1. 1.
    Maria, S., & Echsner-Rasmussen, N. (2015). Smart cities around the world. Geoforum Perspektiv, 14(25), 61–67.Google Scholar
  2. 2.
    Nations, United. (2015). World urbanization prospects: The 2014 revision, highlights. New York: Department of economic and social affairs. Population Division.Google Scholar
  3. 3.
    Braverman, J., Taylor, J., Todosow, H., & von Wimmersperg, U. (2000). The vision of a smart city. Upton, NY: Brookhaven National Lab..Google Scholar
  4. 4.
    Komninos, N., & Sefertzi, E. (2013). Intelligent cities: innovation, knowledge systems and digital spaces. London: Routledge.CrossRefGoogle Scholar
  5. 5.
    Sekhar, K., & Kondepudi, R. (2015). What constitutes a smart city? In Handbook of research on social, economic, and environmental sustainability in the development of smart cities (pp. 1–25). Hershey, PA: IGI Global.Google Scholar
  6. 6.
    Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanović, N., & Meijers, E. (2007). Smart cities: ranking of European medium-sized cities. Vienna: Centre of Regional Science.Google Scholar
  7. 7.
    Giffinger, R., & Gudrun, H. (2010). Smart cities ranking: an effective instrument for the positioning of cities? ACE Architecture, City and Environment, 4(12), 7–25.Google Scholar
  8. 8.
    Lombardi, P., Giordano, S., Farouh, H., & Yousef, W. (2012). Modelling the smart city performance. Innovation: The European Journal of Social Science Research, 25(2), 137–149.Google Scholar
  9. 9.
    Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRefGoogle Scholar
  10. 10.
    Andrea, Z., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal., 1(1), 22–32.CrossRefGoogle Scholar
  11. 11.
    Bellavista, P., Cardone, G., Corradi, A., & Foschini, L. (2013). Convergence of MANET and WSN in IoT urban scenarios. IEEE Sensors Journal, 13(10), 3558–3567.CrossRefGoogle Scholar
  12. 12.
    Dohler, M., Vilajosana, I., Vilajosana, X., & Llosa, J. (2011) Smart cities: An action plan. In Proceedings of Barcelona Smart Cities Congress, Barcelona, Spain, 2011, p. 6.Google Scholar
  13. 13.
    Lynch, J. P., & Kenneth, J. L. (2006). A summary review of wireless sensors and sensor networks for structural health monitoring. Shock and Vibration Digest, 38(2), 91–130.CrossRefGoogle Scholar
  14. 14.
    Nuortio, T., Kytöjoki, J., Niska, H., & Bräysy, O. (2006). Improved route planning and scheduling of waste collection and transport. Expert Systems with Applications, 30(2), 223–232.CrossRefGoogle Scholar
  15. 15.
    Al-Ali, A. R., Zualkernan, I., & Aloul, F. (2010). A mobile GPRS-sensors array for air pollution monitoring. IEEE Sensors Journal., 10(10), 1666–1671.CrossRefGoogle Scholar
  16. 16.
    Eiman, K. (2010). Noisespy: A real-time mobile phone platform for urban noise monitoring and mapping. Mobile Networks and Applications, 15(4), 562–574.CrossRefGoogle Scholar
  17. 17.
    Maisonneuve, N., Stevens, M., Niessen, M. E., Hanappe, P., & Steels, L. (2009). Citizen noise pollution monitoring. In Proceeding of 10th Annual International Conference on Digital Government Research: Social Networks: Making Connections between Citizens, Data and Government (pp. 96–103).Google Scholar
  18. 18.
    Li, X., Shu, W., Li, M., Huang, H.-Y., Luo, P.-E., & Wu, M.-Y. (2009). Performance evaluation of vehicle-based mobile sensor networks for traffic monitoring. IEEE Transactions on Vehicular Technology, 58(4), 1647–1653.CrossRefGoogle Scholar
  19. 19.
    Ramon, B., Gozalvez, J., & Sanchez-Soriano, J. (2010). Road traffic congestion detection through cooperative vehicle-to-vehicle communications. In Proceeding of Local Computer Networks (LCN), 2010 IEEE 35th Conference on (pp. 606–612).Google Scholar
  20. 20.
    Lee, S., Yoon, D., & Ghosh, A. (2008). Intelligent parking lot application using wireless sensor networks. In Proceeding of International Collaborative Technologies and Systems, Chicago, May 19–23, (pp. 48–57).Google Scholar
  21. 21.
    Miguel, C., Jara, A., & Skarmeta, A.. (2013). Smart lighting solutions for smart cities. In Proceeding of 2th IEEE International Conference on Advanced Information Networking and Applications Workshops (WAINA), (pp. 1374–1379).Google Scholar
  22. 22.
    Kastner, W., Neugschwandtner, G., Soucek, S., & Newmann, H. M. (2005). Communication systems for building automation and control. Proceedings of the IEEE, 93(6), 1178–1203.CrossRefGoogle Scholar
  23. 23.
    Lemayian, J. P., Abdelhamid, S., Alturjman, S., Ever, E., & Al-Turjman, F. (2018). 5G in a Convergent internet of things Era: An overview. In 2018 IEEE International Conference on Communications Workshops (ICC Workshops).Google Scholar
  24. 24.
    Rita, P. M., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., & Ladid, L. (2016). Internet of things in the 5G era: Enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34(3), 510–527.CrossRefGoogle Scholar
  25. 25.
    Dai, J., Bai, X., Yang, Z., Shen, Z., & Xuan, D., Perfalld: A pervasive fall detection system using mobile phones, Pervasive Computing and Communications Workshops (PERCOM Workshops). 2010 8th IEEE International Conference on, pp. 292–297, 29 2010-April 12 2010.Google Scholar
  26. 26.
    Lin, Y.-B., & Chlamtac, I. (2001). Wireless and mobile network architectures. New York: Wiley.Google Scholar
  27. 27.
    Wei, W., Liew, S. C., & Li, V. O. K. (2005). Solutions to performance problems in VoIP over a 802.11 wireless LAN. IEEE Transactions on Vehicular Technology, 54(1), 366–384.CrossRefGoogle Scholar
  28. 28.
    Sapakal, R., & Kadam, S. (2013). 5G mobile technology. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2, 568–571.Google Scholar
  29. 29.
    Xi, Z., Cheng, W., & Zhang, H. (2014). Heterogeneous statistical QoS provisioning over 5G mobile wireless networks. IEEE Network, 28(6), 46–53.CrossRefGoogle Scholar
  30. 30.
    Maisonneuve, N., Stevens, M., Niessen, M. E., Steels, L., Allan, R., Frstner, U., & Salomons, W. (2009). Noise tube: Measuring and mapping noise pollution with mobile phones. In Information Technologies in Environmental Engineering ser. Environmental Science and Engineering (pp. 215–228). Berlin Heidelberg: Springer.Google Scholar
  31. 31.
    Al-Turjman, F., & Alturjman, S. (2018). Confidential smart-sensing framework in the IoT Era. The Springer Journal of Supercomputing, 74, 5187. https://doi.org/10.1007/s11227-018-2524-1.CrossRefGoogle Scholar
  32. 32.
    Al-Turjman, F., & Alturjman, S. (2018). 5G/IoT-enabled UAVs for multimedia delivery in industry-oriented applications. Springer’s Multimedia Tools and Applications Journal. https://doi.org/10.1007/s11042-018-6288-7.
  33. 33.
    Al-Turjman, F., & Abdulsalam, A. (2018). Smart-grid and solar energy harvesting in the IoT Era: An overview. Wiley’s Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.4896.
  34. 34.
    Demir, S., & Al-Turjman, F. (2018). Energy scavenging methods for WBAN applications: A review. IEEE Sensors Journal, 18(16), 6477–6488.CrossRefGoogle Scholar
  35. 35.
    Alabady, S., & Al-Turjman, F. (2018). A novel approach for error detection and correction for efficient energy in wireless networks. Springer Multimedia Tools and Applications. https://doi.org/10.1007/s11042-018-6282-0.CrossRefGoogle Scholar
  36. 36.
    Alabady, S., Al-Turjman, F., & Din, S. (2018). A novel security model for cooperative virtual networks in the IoT era. Springer International Journal of Parallel Programming. https://doi.org/10.1007/s10766-018-0580-z.
  37. 37.
    Al-Turjman, F., & Alturjman, S. (2018). Context-sensitive access in industrial internet of things (IIoT) healthcare applications. IEEE Transactions on Industrial Informatics, 14(6), 2736–2744.CrossRefGoogle Scholar
  38. 38.
    Al-Turjman, F. (2017). 5G-enabled devices and smart-spaces in social-IoT: An overview. Elsevier Future Generation Computer Systems. https://doi.org/10.1016/j.future.2017.11.035.CrossRefGoogle Scholar
  39. 39.
    Al-Turjman, F. (2017). A rational data delivery framework for disaster-inspired internet of nano-things (IoNT) in practice. Springer Cluster Computing. https://doi.org/10.1007/s10586-017-1357-7.
  40. 40.
    Al-Turjman, F. (2018). Modelling green femtocells in smart-grids. Springer Mobile Networks and Applications, 23(4), 940–955.CrossRefGoogle Scholar
  41. 41.
    Al-Turjman, F. (2018). Optimized hexagon-based deployment for large-scale ubiquitous sensor networks. Springer's Journal of Network and Systems Management, 26(2), 255–283.Google Scholar
  42. 42.
    Al-Turjman, F. (2017). Cognitive routing protocol for disaster-inspired internet of things. Elsevier Future Generation Computer Systems. https://doi.org/10.1016/j.future.2017.03.014.CrossRefGoogle Scholar
  43. 43.
    Al-Turjman, F. (2017). Cognitive-node architecture and a deployment strategy for the future sensor networks. Springer Mobile Networks and Applications. https://doi.org/10.1007/s11036-017-0891-0.
  44. 44.
    Yatbaz, H., Cinar, B., Gokdemir, A., Ever, E., Al-Turjman, F., Nguyen, H., & Yazici, A. (2018). Hybrid approach for disaster recovery using P2P communications in android. In Proceeding of the IEEE Local Computer Networks (LCN), Chicago, USA, (Accepted).Google Scholar
  45. 45.
    Qadir, Z., Al-Turjman, F., Tafadzwa, V., & Rashid, H. (2018). Smart solar microgrid using zigbee and related security challenges. In International Conference on Research in Education and Science (ICRES), Marmaris, Turkey, April, (Accepted).Google Scholar
  46. 46.
    Qadir, Z., Al-Turjman, F., & Nesimoglu, T. (2018). ZIGBEE based time and energy efficient smart parking system using IOT. In International Conference on Research in Education and Science (ICRES), Marmaris, Turkey, April, (Accepted).Google Scholar
  47. 47.
    Campioni, F., Choudhury, S. & Al-Turjman, F. (2018). Readers scheduling for RFID networks in the IoT Era. In Proceeding of the IEEE International Conf. on Communications (ICC), Kansas City, MO, USA, (Accepted).Google Scholar
  48. 48.
    Kizilkaya, B., Caglar, M., Al-Turjman, F., & Ever, E. (2018). An intelligent car park management system: Hierarchical placement algorithm based on nearest location. In Proceeding of the IEEE Int. Conf. on Advanced Information Networking and Applications, Cracow, Poland, (Accepted).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer EngineeringAntalya Bilim UniversityAntalyaTurkey

Personalised recommendations