Advertisement

Algorithmic Pollution: Understanding and Responding to Negative Consequences of Algorithmic Decision-Making

  • Olivera MarjanovicEmail author
  • Dubravka Cecez-Kecmanovic
  • Richard Vidgen
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 543)

Abstract

In this paper we explore the unintended negative social consequences of algorithmic decision-making, which we define as “algorithmic pollution”. By drawing parallels with environmental pollution, we demonstrate that algorithmic pollution is already here and causing many damaging, unrecognised and yet-to-be understood consequences for individuals, communities and a wider society. Focusing on transformative services (i.e., services that transform human lives, such as social support services, healthcare, and education), we offer an innovative way of framing, exploring and theorizing algorithmic pollution in the contemporary digital environment. Using sociomateriality as a theoretical lens, we explain how this type of pollution is performed, how it is spreading and who is responsible for it. The proposed approach enables us to articulate a preliminary set of IS research challenges of particular importance to the IS community related to living with and responding to algorithmic pollution, together with an urgent call for action. Our main practical contribution comes from the parallels we draw between the environmental protection movement and the newly created sociomaterial environment that needs protecting from the spread of algorithmic pollution.

Keywords

Algorithmic pollution Sociomaterial environment Negative consequences Algorithmic justice 

References

  1. 1.
    Caplan, R., Donovan, J., Hanson, L., Matthews, J.: Algorithmic accountability: a primer. Prepared for the Congressional Progressive Caucus, 18 April 2018. Data & Society, Washington, DC. https://datasociety.net/wp-content/uploads/2018/04/Data_Society_Algorithmic_Accountability_Primer_FINAL-4.pdf, last accessed 2018/08/21
  2. 2.
    Cukier, K., Mayer-Schonberger, V.: Big Data: A Revolution that will Transform How We Live, Work and Think. Houghton Mifflin Harcourt, Boston (2013)Google Scholar
  3. 3.
    Davenport, T.: Big data @ Work: Dispelling the Myths, Uncovering the Opportunities. Harvard Business Review Press, London (2014)CrossRefGoogle Scholar
  4. 4.
    Perkins, A.: May to pledge millions to AI research assisting early cancer diagnosis. The Guardian 1–2 (2018)Google Scholar
  5. 5.
    Steiner, C.: Automate This: How Algorithms Came to Rule Our World. Penguin, New York (2012)Google Scholar
  6. 6.
    Newell, S., Mirabelli, M.: Strategic opportunities (and challenges) of algorithmic decision-making: a call for action on the long-term societal effects of ‘datafication. J. Strateg. Inf. Syst. 24(1), 3–14 (2015)CrossRefGoogle Scholar
  7. 7.
    Ostrom, A.L., Parasuraman, A., Bowen, D.E., et al.: Service research priorities in a rapidly changing context”. J. Serv. Res. 18(2), 127–159 (2015)CrossRefGoogle Scholar
  8. 8.
    Anderson, L., Ostrom, A.L.: Transformative service research – advancing our knowledge about service and well-being. J. Serv. Res. 18(3), 243–249 (2015)CrossRefGoogle Scholar
  9. 9.
    Anderson, L., Ostrom, A.L., Corus, C., et al.: Transformative service research: an agenda for the future. J. Bus. Res. 66(8), 1203–1210 (2013)CrossRefGoogle Scholar
  10. 10.
    Eubanks, V.: Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Press, New York (2017)Google Scholar
  11. 11.
    O’Neil, C.: Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Penguin Random House, New York (2016)zbMATHGoogle Scholar
  12. 12.
    Galliers, R.D., Newell, S., Shanks, G., Topi, H.: Datafication and its human, organizational and societal effects: The strategic opportunities and challenges of algorithmic decision-making. J. Strateg. Inf. Syst. 26(3), 185–190 (2017)CrossRefGoogle Scholar
  13. 13.
    Markus, L.: Datafication, organizational strategy, and IS research: what’s the score?”. J. Strateg. Inf. Syst. 26(3), 233–241 (2017)CrossRefGoogle Scholar
  14. 14.
    Marjanovic, O., Cecez-Kecmanovic, D.: Exploring the tension between transparency and datafication effects of open government IS through the lens of Complex Adaptive Systems. J. Strateg. Inf. Syst. 26(3), 210–232 (2017)CrossRefGoogle Scholar
  15. 15.
    Clarke, R.: Risks inherent in the digital surveillance economy: a research agenda. J. Inf. Technol. (2018, forthcoming)Google Scholar
  16. 16.
    EPA: EPA – United States Environmental Protection Agency. https://www.epa.gov/laws-regulations/summary-national-environmental-policy-act. Accessed 21 Aust 2018
  17. 17.
    Chollet, F.: Deep Learning with R. Manning Publications, Greenwich (2018)Google Scholar
  18. 18.
    Kowalski, R.: Algorithm = Logic + Control. Commun. ACM 22(7), 424–436 (1979)CrossRefGoogle Scholar
  19. 19.
    Kitchin, R.: Thinking critically about and researching algorithms. Inf. Commun. Soc. 20(1), 14–29 (2017)CrossRefGoogle Scholar
  20. 20.
    Lazer, D., Kennedy, R., King, G., Vespignani, A.: The parable of Google flu: traps in big data analysis. Science 343(6176), 1203–1205 (2014)CrossRefGoogle Scholar
  21. 21.
    Voosen, P.: The AI detectives: as neural nets push into science, researchers probe back. Science 357(6346), 22–27 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hutson, M.: AI researchers allege that machine learning is alchemy. Science, 3 May 2018. http://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy. Accessed 5 May 2018
  23. 23.
    Loebbecke, C., Picot, A.: Reflection on societal and business model transformation arising from digitization and big data analytics: A research agenda. J. Strateg. Inf. Syst. 24(3), 149–157 (2015)CrossRefGoogle Scholar
  24. 24.
    Lycett, M.: Editorial: ‘datafication’: making sense of (big) data in a complex world. Eur. J. Inf. Syst. 22(4), 381–386 (2013)CrossRefGoogle Scholar
  25. 25.
    Gitelman, L.: “Raw Data” is an Oxymoron. MIT Press, Cambridge (2013)Google Scholar
  26. 26.
    Daikopoulos, N.: Algorithmic accountability reporting: on the investigation of black boxes. A Tow/Knight brief. Tow Center for Digital Journalism, Columbia Journalism School. http://towcenter.org/algorithmic-accountability-2/. Accessed 21 Aug 2018
  27. 27.
    Pasquale, F.: The Black Box Society: The Secret Algorithms that Control Money and Information. Harvard University Press, Cambridge (2015)CrossRefGoogle Scholar
  28. 28.
    Ferguson, A.G.: The police are using computer algorithms to tell if you’re a treat. Time 1–2 (2017)Google Scholar
  29. 29.
    Tett, G.: Mapping crime – or stirring hate? Financial Times, Opinion, August 2014Google Scholar
  30. 30.
    Terhune, C.: They know what’s in your medicine cabinet. Business Week, July 2008Google Scholar
  31. 31.
    Lynch, M., Kimberly, L., Stretesky, P., Long, M., Jarrell, M., Ozymy, J.: Crime as pollution? Theoretical, definitional and policy concerns with conceptualizing crime as pollution. Am. J. Crim. Just. 40, 843–860 (2015)CrossRefGoogle Scholar
  32. 32.
    Online Encyclopaedia. www.encyclopedia.com. Accessed 21 Aug 2018
  33. 33.
    Encyclopedia Britannica. www.britannica.com/science/pollution-environment. Accessed 21 Aug 2018
  34. 34.
    Harrison, R.M. (ed.): An Introduction to Pollution Science. Royal Society of Chemistry, London (2006)Google Scholar
  35. 35.
    Reisman, D., Schultz, J., Carwford, K., Whittaker, M.: Algorithmic impact assessments: a practical framework for public agency accountability. AI Now (2018)Google Scholar
  36. 36.
    Seaver, N.: Knowing Algorithms. Media in Transition 8, Cambridge. http://nickseaver.net/papers/seaverMiT8.pdf. Accessed 21 Aug 2018
  37. 37.
    McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D., Barton, D.: Big data: the management revolution. Harvard Bus. Rev. 90(10), 61–67 (2012)Google Scholar
  38. 38.
    Drucker, J.: Performative materiality and theoretical approaches to interface. Digit. Human. Q. 7(1). http://www.digitalhumanities.org/dhq/vol/7/1/000143/000143.html. Accessed 01 May 2018
  39. 39.
    Introna, L.: Algorithms, governance, and governmentality: on governing academic writing. Sci. Technol. Hum. Values 41(1), 17–49 (2016)CrossRefGoogle Scholar
  40. 40.
    Shotter, J.: Understanding process from within: an argument for ‘witness’-thinking. Org. Stud. 27(4), 585–604 (2006)CrossRefGoogle Scholar
  41. 41.
    Mackenzie, A., Vurdubakis, T.: Code and coding in crisis: signification, performativity and excess. Theory Cult. Soc. 28(6), 3–23 (2011)CrossRefGoogle Scholar
  42. 42.
    Barad, K.: Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning. Duke University Press, Durham (2007)CrossRefGoogle Scholar
  43. 43.
    Beer, D.: The social power of algorithms. Inf. Commun. Soc. 20(1), 1–13 (2017)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Latour, B.: Reassembling the Social: An Introduction to Actor-Network-Theory. Oxford University Press, Oxford (2005)Google Scholar
  45. 45.
    Law, J.: After Method: Mess in Social Science Research. Routledge, London (2004)Google Scholar
  46. 46.
    Law, J., Hassard, J. (eds.): Actor Network Theory and After. Blackwell and the Sociological Review, Oxford and Keele (1999)Google Scholar
  47. 47.
    Law, J., Lien, M.E.: Slippery: field notes in empirical ontology. Soc. Stud. Sci. 42(3), 363–378 (2012)CrossRefGoogle Scholar
  48. 48.
    IEEE: The IEEE Global initiative on ethics of autonomous and intelligent systems. IEEE Standards 2018. http://standards.ieee.org. Accessed 21 Aug 2018
  49. 49.
    Wrhane, P.: Mental models, moral imagination and systems thinking in the age of globalization. J. Bus. Ethics 78, 463–474 (2008)CrossRefGoogle Scholar
  50. 50.
    Arney, J.: Environmental Justice. Encyclopaedia Britannica. https://www.britannica.com/topic/environmental-justice. Accessed 16 May 2018
  51. 51.
    Brandom, R.: New Toronto declaration calls on algorithms to respect human rights. The Verge, 16 May 2018Google Scholar
  52. 52.
    Schmelzer, R.: Combination of blockchain and AI makes models more transparent. TechTarget, May 2018. https://searchenterpriseai.techtarget.com/feature/Combination-of-blockchain-and-AI-makes-models-more-transparent. Accessed 21 Aug 2018
  53. 53.
    Gilpin, A.: Chapter 1: EIA approaches. In: Environmental Impact Assessment (EIA): Cutting Edge for the Twenty-First Century, pp. 1–15. Cambridge University Press, Cambridge (1995)Google Scholar
  54. 54.
    Nordhaus, T., Shellenberger, M.: The monsters of Bruno Latour. Breakthrough J. (Spring) (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Olivera Marjanovic
    • 1
    Email author
  • Dubravka Cecez-Kecmanovic
    • 2
  • Richard Vidgen
    • 2
  1. 1.University of Technology SydneySydneyAustralia
  2. 2.University of New South WalesSydneyAustralia

Personalised recommendations