Advertisement

Factoring Block Fiedler Companion Matrices

  • Gianna M. Del CorsoEmail author
  • Federico Poloni
  • Leonardo Robol
  • Raf Vandebril
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 30)

Abstract

When Fiedler published his “A note on Companion matrices” in 2003 on Linear Algebra and its Applications, he could not have foreseen the significance of this elegant factorization of a companion matrix into essentially two-by-two Gaussian transformations, which we will name (scalar) elementary Fiedler factors. Since then, researchers extended these results and studied the various resulting linearizations, the stability of Fiedler companion matrices, factorizations of block companion matrices, Fiedler pencils, and even looked at extensions to non-monomial bases. In this chapter, we introduce a new way to factor block Fiedler companion matrices into the product of scalar elementary Fiedler factors. We use this theory to prove that, e.g. a block (Fiedler) companion matrix can always be written as the product of several scalar (Fiedler) companion matrices. We demonstrate that this factorization in terms of elementary Fiedler factors can be used to construct new linearizations. Some linearizations have notable properties, such as low bandwidth, or allow for factoring the coefficient matrices into unitary-plus-low-rank matrices. Moreover, we will provide bounds on the low-rank parts of the resulting unitary-plus-low-rank decomposition. To present these results in an easy-to-understand manner, we rely on the flow-graph representation for Fiedler matrices recently proposed by Del Corso and Poloni in Linear Algebra and its Applications, 2017.

Keywords

Companion matrix Fiedler linearizations 

Notes

Acknowledgements

The research of the first three authors was partially supported by GNCS projects “Metodi numerici avanzati per equazioni e funzioni di matrici con struttura” and “Tecniche innovative per problemi di algebra lineare”; the research of the first two was also supported by University of Pisa under the grant PRA-2017-05. The research of the fourth author was supported by the Research Council KU Leuven, project C14/16/056 (Inverse-free Rational Krylov Methods: Theory and Applications).

References

  1. 1.
    Anguas, L.M., Bueno, M.I., Dopico, F.M.: A comparison of eigenvalue condition numbers for matrix polynomials, arXiv preprint arXiv:1804.09825 (2018)Google Scholar
  2. 2.
    Antoniou, E.N., Vologiannidis, S.: A new family of companion forms of polynomial matrices. Electron. J. Linear Algebra 11, 78–87 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aurentz, J.L., Vandebril, R., Watkins, D.S.: Fast computation of the zeros of a polynomial via factorization of the companion matrix. SIAM J. Sci. Comput. 35, A255–A269 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aurentz, J.L., Mach, T., Vandebril, R., Watkins, D.S.: Fast and backward stable computation of roots of polynomials. SIAM J. Matrix Anal. Appl. 36, 942–973 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aurentz, J.L., Mach, T., Vandebril, R., Watkins, D.S.: Fast and stable unitary QR algorithm. Electron. Trans. Numer. Anal. 44, 327–341 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Aurentz, J.L., Mach, T., Robol, L., Vandebril, R., Watkins, D.S.: Core-Chasing Algorithms for the Eigenvalue Problem, vol. 13 of Fundamentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2018)Google Scholar
  7. 7.
    Aurentz, J.L., Mach, T., Robol, L., Vandebril, R., Watkins, D.S.: Fast and backward stable computation of the eigenvalues of matrix polynomials. Math. Comput. 88, 313–247 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bevilacqua, R., Del Corso, G.M., Gemignani, L.: A CMV-based eigensolver for companion matrices. SIAM J. Matrix Anal. Appl. 36, 1046–1068 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bevilacqua, R., Del Corso, G.M., Gemignani, L.: Compression of unitary rank-structured matrices to CMV-like shape with an application to polynomial rootfinding. J. Comput. Appl. Math. 278, 326–335 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bevilacqua, R., Del Corso, G.M., Gemignani, L.: Fast QR iterations for unitary plus low-rank matrices, arXiv preprint arXiv:1810.0270 (2018)Google Scholar
  11. 11.
    Bini, D.A., Robol, L.: On a class of matrix pencils and -ifications equivalent to a given matrix polynomial. Linear Algebra Appl. 502, 275–298 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bini, D.A., Eidelman, Y., Gemignani, L., Gohberg, I.: Fast QR eigenvalue algorithms for Hessenberg matrices which are rank-one perturbations of unitary matrices. SIAM J. Matrix Anal. Appl. 29, 566–585 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bini, D.A., Boito, P., Eidelman, Y., Gemignani, L., Gohberg, I.: A fast implicit QR eigenvalue algorithm for companion matrices. Linear Algebra Appl. 432, 2006–2031 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Boito, P., Eidelman, Y., Gemignani, L.: Implicit QR for rank-structured matrix pencils. BIT Numer. Math. 54, 85–111 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Boito, P., Eidelman, Y., Gemignani, L.: A real QZ algorithm for structured companion pencils, arXiv preprint arXiv:1608.05395 (2016)Google Scholar
  16. 16.
    Bueno, M.I., De Terán, F.: Eigenvectors and minimal bases for some families of Fiedler-like linearizations. Linear Multilinear Algebra 62, 39–62 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bueno, M.I., Furtado, S.: Palindromic linearizations of a matrix polynomial of odd degree obtained from Fiedler pencils with repetition. Electron. J. Linear Algebra 23, 562–577 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bueno, M.I., de Terán, F., Dopico, F.M.: Recovery of eigenvectors and minimal bases of matrix polynomials from generalized Fiedler linearizations. SIAM J. Matrix Anal. Appl. 32, 463–483 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bueno, M.I., Curlett, K., Furtado, S.: Structured strong linearizations from Fiedler pencils with repetition I. Linear Algebra Appl. 460, 51–80 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bueno, M.I., Dopico, F.M., Furtado, S., Rychnovsky, M.: Large vector spaces of block-symmetric strong linearizations of matrix polynomials. Linear Algebra Appl. 477, 165–210 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bueno, M.I., Dopico, F.M., Furtado, S., Medina, L.: A block-symmetric linearization of odd-degree matrix polynomials with optimal eigenvalue condition number and backward error. Calcolo 55(3), 32 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    De Terán, F., Dopico, F.M., Mackey, D.S.: Fiedler companion linearizations and the recovery of minimal indices. SIAM J. Matrix Anal. Appl. 31, 2181–2204 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    De Terán, F., Dopico, F.M., Mackey, D.S.: Palindromic companion forms for matrix polynomials of odd degree. J. Comput. Math. 236, 1464–1480 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    De Terán, F., Dopico, F.M., Pérez, J.: Condition numbers for inversion of Fiedler companion matrices. Linear Algebra Appl. 439, 944–981 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    De Terán, F., Dopico, F.M., Mackey, D.S.: Spectral equivalence of matrix polynomials and the Index Sum Theorem. Linear Algebra Appl. 459, 264–333 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Dopico, F.M., Lawrence, P.W., Pérez, J., Van Dooren, P.: Block Kronecker linearizations of matrix polynomials and their backward errors, arXiv preprint arXiv:1707.04843 (2017)Google Scholar
  27. 27.
    Fiedler, M.: A note on companion matrices. Linear Algebra Appl. 372, 325–331 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hammarling, S., Munro, C.J., Tisseur, F.: An algorithm for the complete solution of quad ratic eigenvalue problems. ACM Trans. Math. Softw. 39, 18 (2013)CrossRefGoogle Scholar
  29. 29.
    Higham, N.J., Mackey, D.S., Mackey, N., Tisseur, F.: Symmetric linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 29, 143–159 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 971–1004 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Poloni, F., Del Corso, G.M.: Counting Fiedler pencils with repetitions. Linear Algebra Appl. 532, 463–499 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Raz, R.: On the complexity of matrix product. In: Proceedings of the Thirty-fourth Annual ACM Symposium on Theory of Computing, STOC ’02, New York, NY, USA, ACM, pp. 144–151 (2002)Google Scholar
  33. 33.
    Robol, L., Vandebril, R., Dooren, P.V.: A framework for structured linearizations of matrix polynomials in various bases. SIAM J. Matrix Anal. Appl. 38, 188–216 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl. 309, 339–361 (2000)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Van Barel, M., Tisseur., F.: Polynomial eigenvalue solver based on tropically scaled Lagrange linearization. Linear Algebra Appl. 542, 186–208 (2018)Google Scholar
  36. 36.
    Vologiannidis, S., Antoniou, E.N.: A permuted factors approach for the linearization of polynomial matrices. Math. Control Signals Syst. 22, 317–342 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gianna M. Del Corso
    • 1
    Email author
  • Federico Poloni
    • 1
  • Leonardo Robol
    • 2
  • Raf Vandebril
    • 3
  1. 1.University of PisaDept. Computer SciencePisaItaly
  2. 2.Institute of Information Science and Technologies “A. Faedo”ISTI-CNRPisaItaly
  3. 3.University of Leuven (KU Leuven)Dept. Computer ScienceLeuvenBelgium

Personalised recommendations