The Derivative of the Matrix Geometric Mean with an Application to the Nonnegative Decomposition of Tensor Grids

  • Bruno IannazzoEmail author
  • Ben Jeuris
  • Filippo Pompili
Part of the Springer INdAM Series book series (SINDAMS, volume 30)


We provide an expression for the derivative of the weighted matrix geometric mean, with respect to both the matrix arguments and the weights, that can be easily translated to an algorithm for its computation. As an application, we consider the problem of the approximate decomposition of a tensor grid M, a matrix whose entries are positive definite matrices. For different geometries on the set of positive definite matrices, we derive an approximate decomposition such that any column of M is a barycentric combination of the columns of a smaller tensor grid. This extends the Euclidean case, already considered in the literature, to the geometry in which the barycenter is the matrix geometric mean and the log-Euclidean geometry.


Matrix geometric mean Karcher mean Tensor grid Positive definite matrix Nonnegative factorization 



The authors would like to thank the referees for carefully reading the manuscript, providing many insightful comments which improved the presentation of the chapter.


  1. 1.
    Batchelor, P.G., Moakher, M., Atkinson, D., Calamante, F., Connelly, A.: A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 53(1), 221–225 (2005)CrossRefGoogle Scholar
  2. 2.
    Bhatia, R.: Positive Definite Matrices. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
  3. 3.
    Bhatia, R., Holbrook, J.: Riemannian geometry and matrix geometric means. Linear Algebra Appl. 413(2–3), 594–618 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bini, D.A., Iannazzo, B.: A note on computing matrix geometric means. Adv. Comput. Math. 35(2–4), 175–192 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bini, D.A., Iannazzo, B.: Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438(4), 1700–1710 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bini, D.A., Iannazzo, B., Jeuris, B., Vandebril, R.: Geometric means of structured matrices. BIT 54(1), 55–83 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cheng, G., Vemuri, B.C.: A novel dynamic system in the space of SPD matrices with applications to appearance tracking. SIAM J. Imaging Sci. 6(1), 592–615 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Congedo, M., Barachant, A., Bhatia, R.: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Comput. Interfaces 4(3), 155–174 (2017)CrossRefGoogle Scholar
  9. 9.
    Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)CrossRefGoogle Scholar
  10. 10.
    Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)Google Scholar
  11. 11.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  12. 12.
    Iannazzo, B.: The geometric mean of two matrices from a computational viewpoint. Numer. Linear Algebra Appl. 23(2), 208–229 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Iannazzo, B., Porcelli, M.: The Riemannian Barzilai–Borwein method with nonmonotone line search and the matrix geometric mean computation. IMA J. Numer. Anal. 38(1), 495–517 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jeuris, B., Vandebril, R., Vandereycken, B.: A survey and comparison of contemporary algorithms for computing the matrix geometric mean. Electron. Trans. Numer. Anal. 39, 379–402 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lang, S.: Fundamentals of Differential Geometry, Graduate Texts in Mathematics, vol. 191. Springer, New York (1999)CrossRefGoogle Scholar
  16. 16.
    Lawson, J., Lim, Y.: Weighted means and Karcher equations of positive operators. Proc. Natl. Acad. Sci. U. S. A. 110(39), 15626–15632 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Leen, T., Dietterich, T., Tresp, V. (eds) Advances in Neural Information Processing Systems, vol. 13, pp. 556–562. MIT Press, Cambridge (2001)Google Scholar
  18. 18.
    Moakher, M.: On the averaging of symmetric positive-definite tensors. J. Elasticity 82(3), 273–296 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Moakher, M., Zéraï, M.: The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of positive-definite matrix-valued data. J. Math. Imaging Vision 40(2), 171–187 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by self-concordant barriers and interior-point methods. Found. Comput. Math. 2(4), 333–361 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rentmeesters, Q., Absil, P.A.: Algorithm comparison for Karcher mean computation of rotation matrices and diffusion tensors. In: 2011 19th European Signal Processing Conference, pp. 2229–2233. IEEE (2011)Google Scholar
  22. 22.
    Sra, S., Dhillon, I.S.: Nonnegative Matrix Approximation: Algorithms and Applications. Technical Report TR-06-27, The University of Texas at Austin, June (2006)Google Scholar
  23. 23.
    Wang, Y., Salehian, H., Cheng, G., Vemuri, B.C.: Tracking on the product manifold of shape and orientation for tractography from diffusion MRI. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3051–3056. IEEE (2014)Google Scholar
  24. 24.
    Xie, Y., Ho, J., Vemuri, B.: Nonnegative factorization of diffusion tensor images and its applications. In: International Conference on Information Processing in Medical Imaging (IPMI) (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di PerugiaPerugiaItaly
  2. 2.Department of Computer ScienceKU LeuvenLeuvenBelgium
  3. 3.Thomson ReutersTorontoCanada

Personalised recommendations