A Krylov Subspace Method for the Approximation of Bivariate Matrix Functions

  • Daniel KressnerEmail author
Part of the Springer INdAM Series book series (SINDAMS, volume 30)


Bivariate matrix functions provide a unified framework for various tasks in numerical linear algebra, including the solution of linear matrix equations and the application of the Fréchet derivative. In this work, we propose a novel tensorized Krylov subspace method for approximating such bivariate matrix functions and analyze its convergence. While this method is already known for some instances, our analysis appears to result in new convergence estimates and insights for all but one instance, Sylvester matrix equations.


Matrix function Krylov subspace method Bivariate polynomial Fréchet derivative Sylvester equation 



The author thanks Marcel Schweitzer for inspiring discussions on the topic of this work and Christian Lubich for the idea of the proof for Lemma 5. He also thanks the referees for their constructive comments, which improved the presentation of the paper.


  1. 1.
    Bartels, R.H., Stewart, G.W.: Algorithm 432: the solution of the matrix equation AX + XB = C. Commun. ACM 15, 820–826 (1972)CrossRefGoogle Scholar
  2. 2.
    Beckermann, B.: An error analysis for rational Galerkin projection applied to the Sylvester equation. SIAM J. Numer. Anal. 49, 2430–2450 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beckermann, B., Reichel, L.: Error estimates and evaluation of matrix functions via the Faber transform. SIAM J. Numer. Anal. 47, 3849–3883 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beckermann, B., Kressner, D., Schweitzer, M.: Low-rank updates of matrix functions. SIAM J. Matrix Anal. Appl. (2017, to appear). arXiv:1707.03045Google Scholar
  5. 5.
    Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM-Mitt. 36, 32–52 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benner, P., Kürschner, P., Saak, J.: Frequency-limited balanced truncation with low-rank approximations. SIAM J. Sci. Comput. 38, A471–A499 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Benzi, M., Simoncini, V.: Approximation of functions of large matrices with Kronecker structure. Numer. Math. 135, 1–26 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Crouzeix, M., Palencia, C.: The numerical range is a \((1+\sqrt {2})\)-spectral set. SIAM J. Matrix Anal. Appl. 38, 649–655 (2017)Google Scholar
  9. 9.
    Daleckiı̆, J.L., Kreı̆n, S.G.: Stability of Solutions of Differential Equations in Banach Space. American Mathematical Society, Providence (1974)Google Scholar
  10. 10.
    Frommer, A., Simoncini, V.: Matrix functions. In: Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol. 13, pp. 275–303. Springer, Berlin (2008)Google Scholar
  11. 11.
    Frommer, A., Lund, K., Szyld, D.B.: Block Krylov subspace methods for functions of matrices. Electron. Trans. Numer. Anal. 47, 100–126 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gawronski, W., Juang, J.-N.: Model reduction in limited time and frequency intervals. Int. J. Syst. Sci. 21, 349–376 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gil’, M.: Norm estimates for functions of two non-commuting matrices. Electron. J. Linear Algebra 22, 504–512 (2011)Google Scholar
  14. 14.
    Grasedyck, L., Hackbusch, W., Khoromskij, B.N.: Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices. Computing 70, 121–165 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Güttel, S.: Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection. GAMM-Mitt. 36, 8–31 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Haber, A., Verhaegen, M.: Sparse solution of the Lyapunov equation for large-scale interconnected systems. Automatica J. IFAC 73, 256–268 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Henrici, P.: Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices. Numer. Math. 4, 24–40 (1962)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Higham, N. J.: Functions of Matrices. SIAM, Philadelphia (2008)CrossRefGoogle Scholar
  19. 19.
    Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jaimoukha, I., Kasenally, E.: Oblique projection methods for large scale model reduction. SIAM J. Matrix Anal. Appl. 16, 602–627 (1995)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kandolf, P., Koskela, A., Relton, S.D., Schweitzer, M.: Computing low-rank approximations of the Frchet derivative of a matrix function using Krylov subspace methods, Personal communicationGoogle Scholar
  22. 22.
    Krantz, S.G.: Function Theory of Several Complex Variables. Wiley, New York (1982)zbMATHGoogle Scholar
  23. 23.
    Kressner, D.: Bivariate matrix functions. Oper. Matrices 8, 449–466 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31, 1688–1714 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kressner, D., Massei, S., Robol, L.: Low-rank updates and a divide-and-conquer method for linear matrix equations (2017). arXiv:1712.04349Google Scholar
  26. 26.
    Kürschner, P.: Balanced truncation model order reduction in limited time intervals for large systems (2017). arXiv:1707.02839Google Scholar
  27. 27.
    Lancaster, P.: Explicit solutions of linear matrix equations. SIAM Rev. 12, 544–566 (1970)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lubich, C.: From quantum to classical molecular dynamics: reduced models and numerical analysis. In: Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008)Google Scholar
  29. 29.
    Mathias, R.: A chain rule for matrix functions and applications. SIAM J. Matrix Anal. Appl. 17, 610–620 (1996)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Palitta, D., Simoncini, V.: Numerical methods for large-scale Lyapunov equations with symmetric banded data (2017). arXiv 1711.04187Google Scholar
  31. 31.
    Palitta, D., Simoncini, V.: Computationally enhanced projection methods for symmetric Sylvester and Lyapunov matrix equations. J. Comput. Appl. Math. 330, 648–659 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Saad, Y.: Numerical solution of large Lyapunov equations. In: Signal Processing, Scattering and Operator Theory, and Numerical Methods (Amsterdam, 1989). Program Systems Control Theory, vol. 5, pp. 503–511. Birkhäuser, Boston (1990)Google Scholar
  33. 33.
    Saad, Y.: Numerical Methods for Large Eigenvalue Problems: Theory and Algorithms. Wiley, New York (1992)zbMATHGoogle Scholar
  34. 34.
    Simoncini, V.: On the numerical solution of AX − XB = C. BIT 36, 814–830 (1996)Google Scholar
  35. 35.
    Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58, 377–441 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Simoncini, V., Druskin, V.: Convergence analysis of projection methods for the numerical solution of large Lyapunov equations. SIAM J. Numer. Anal. 47, 828–843 (2009)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Starke, G.: Fields of values and the ADI method for nonnormal matrices. Linear Algebra Appl. 180, 199–218 (1993)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Stewart, G.W.: Matrix Algorithms, vol. II. SIAM, Philadelphia (2001). EigensystemsGoogle Scholar
  39. 39.
    Thanou, D., Dong, X., Kressner, D., Frossard, P.: Learning heat diffusion graphs. IEEE Trans. Signal Inform. Process. Netw. 3, 484–499 (2017)MathSciNetGoogle Scholar
  40. 40.
    Trefethen, L.N.: Multivariate polynomial approximation in the hypercube. Proc. Am. Math. Soc. 145, 4837–4844 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of MathematicsEPF LausanneLausanneSwitzerland

Personalised recommendations