Advertisement

Graph Minors from Simulated Annealing for Annealing Machines with Sparse Connectivity

  • Yuya Sugie
  • Yuki Yoshida
  • Normann Mertig
  • Takashi Takemoto
  • Hiroshi Teramoto
  • Atsuyoshi Nakamura
  • Ichigaku Takigawa
  • Shin-Ichi Minato
  • Masanao Yamaoka
  • Tamiki Komatsuzaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11324)

Abstract

The emergence of new annealing hardware in the last decade and its potential for efficiently solving NP hard problems in quadratically unconstrained binary optimization (QUBO) by emulating the ground state search of an Ising model are likely to become an important paradigm in natural computing. Driven by the need to parsimoniously exploit the limited hardware resources of present day and near-term annealers, we present a heuristic for constructing graph minors by means of simulated annealing. We demonstrate that our algorithm improves on state of the art hardware embeddings, allowing for the representation of certain QUBO problems with up to 50% more binary variables.

Keywords

Heuristics Graph minor Annealing QUBO 

Notes

Acknowledgements

It is our pleasure to thank Hirofumi Suzuki, Kazuhiro Kurita, and Shoya Takahashi for supporting the organization of the “Hokkaido University & Hitachi 2nd New-Concept Computing Contest 2017.”

References

  1. 1.
    Adler, I., et al.: Faster parameterized algorithms for minor containment. Theoret. Comput. Sci. 412(50), 7018–7028 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cai, J., Macready, B., Roy, A.: A practical heuristic for finding graph minors, arxiv:1406.2741
  3. 3.
    Choi, V.: Minor-embedding in adiabatic quantum computation: I. the parameter setting problem. Quant. Inf. Process. 7(5), 193–209 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Choi, V.: Minor-embedding in adiabatic quantum computation: II. minor-universal graph design. Quant. Inf. Process. 10(3), 343–353 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Farhi, E., et al.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Inagaki, T., et al.: A coherent Ising machine for 2000-node optimization problems. Science 354(6312), 603–606 (2016).  https://doi.org/10.1126/science.aah4243CrossRefGoogle Scholar
  7. 7.
    Isakov, S., et al.: Optimised simulated annealing for Ising spin glasses. Comput. Phys. Commun. 192, 265–271 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473, 194–198 (2011)CrossRefGoogle Scholar
  9. 9.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998)CrossRefGoogle Scholar
  10. 10.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: minor embedding with hard faults. Quant. Inf. Process. 13(3), 709–729 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kochenberger, G., et al.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)CrossRefGoogle Scholar
  14. 14.
    McMahon, P.L., et al.: A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354(6312), 614–617 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Okuyama, T., et al.: Contractive graph-minor embedding for CMOS Ising computer. IEICE Tech. Rep. 116, 97–103 (2016)Google Scholar
  16. 16.
    Okuyama, T., Hayashi, M., Yamaoka, M.: An Ising computer based on simulated quantum annealing by path integral Monte Carlo method. In: 2017 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–6 (2017)Google Scholar
  17. 17.
    Shahriari, B., et al.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)CrossRefGoogle Scholar
  18. 18.
    Yamaoka, M., et al.: A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing. IEEE J. Solid-State Circ. 51(1), 303–309 (2016)CrossRefGoogle Scholar
  19. 19.
    Zhu, Z., Ochoa, A.J., Katzgraber, H.G.: Efficient cluster algorithm for spin glasses in any space dimension. Phys. Rev. Lett. 115, 077201 (2015)CrossRefGoogle Scholar
  20. 20.
    See publications in technology section on the homepage of D-Wave Systems Inc. Accessed 20 July 2018. https://www.dwavesys.com/

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Hitachi Hokkaido University Laboratory, Center for Exploratory Research, Research and Development GroupHitachi, Ltd.SapporoJapan
  2. 2.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  3. 3.Department of Complexity Science and Engineering, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  4. 4.Research Center of Mathematics for Social Creativity, Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
  5. 5.PRESTO, Japan Science and Technology Agency (JST)Kawaguchi-shiJapan
  6. 6.Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations