Advertisement

Integrative Biological, Cognitive and Affective Modeling of a Drug-Therapy for a Post-traumatic Stress Disorder

  • S. Sahand Mohammadi-Ziabari
  • Jan Treur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11324)

Abstract

In this paper a computational model of a therapy for post-traumatic stress disorder by medicines is presented. The considered therapy has as a goal to decrease the stress level of a stressed individual by injections. Several medicines have been used to decrease the stress level. The presented temporal-causal network model aims at integrative modeling a medicine-based therapy where the relevant biological, cognitive and affective factors are modeled in a dynamic manner. In the first phase a strong stress-inducing stimulus causes the individual to develop an (affective) extreme stressful emotion. In the second phase, the individual makes the (cognitive) decision to apply an injection as a medicine with a goal shown to make the stressed individual relaxed. The third phase (biologically) models how the injection reduces the stress level.

Keywords

Integrative temporal-causal network model Biological Affective Cognitive Extreme emotion Medicine therapy 

References

  1. 1.
    Aghajanian, G., Cedarbaum, J., Wang, R.: Evidence for norepinephrine-mediated collateral inhabitation of locus coeruleus neurons. Brain Res. 136, 570–577 (1977)CrossRefGoogle Scholar
  2. 2.
    Anisman, H., Suissa, A., Sklar, L.S.: Escape deficits induced by uncontrollable stress: antagonism by dopamine and norepinephrine agonists. Can. Vet. J. 28, 34–47 (1980)Google Scholar
  3. 3.
    Arnesten, A.F.: Catecholamine regulation of the prefrontal cortex. J. Psychopharmacol. 11, 151–162 (1997)CrossRefGoogle Scholar
  4. 4.
    Belkin, M.R., Schwartz, T.L.: Alpha -2 receptor agonists for the treatment of post-traumatic stress disorder. Drugs Context 4, 212–286 (2015).  https://doi.org/10.7573/dic.212286.PMC4544272CrossRefGoogle Scholar
  5. 5.
    Berridge, C.W., Foote, S.L.: Enhancement of behavioral and electroencephalographic indices of waking following stimulation of noradrenergic beta-receptors within the medial septal region of the basal forebrain. J. Neurosci. 16, 6999–7009 (1996)CrossRefGoogle Scholar
  6. 6.
    Black, P.H.: Central nervous system-immune system interactions: psychoneuroendocrinology of stress and its immune consequences. Antimicrob. Agents Chemother. 38, 1–6 (1994)CrossRefGoogle Scholar
  7. 7.
    Bremner, J.D., Krystal, J.H., Southwick, S.M., Chrney, D.S.: Noradrenergic mechanisms in stress and anxiety: I. Precilincal Stud. Synap. 23, 28–38 (1996)CrossRefGoogle Scholar
  8. 8.
    Coupland, N.J.: Brain mechanisms and neurotransmitters; Post-Traumatic Stress Disorder: Diagnosis, Management, and Treatment. Dunitz Ltd., London (2000)Google Scholar
  9. 9.
    Crummier, T.L., Green., B.L.: Posttraumatic stress disorder as an early response to sexual assault. J. Interpers. Violence 6, 160–73 (1991)Google Scholar
  10. 10.
    Ehlers, A., Mayou, R.A., Bryant, B.: Psychological predictors of chronic posttraumatic stress disorder after motor vehicle accidents. J. Abnorm. Psychol. 107(3), 508–519 (1998)CrossRefGoogle Scholar
  11. 11.
    Famularo, R., Kinscherff, R., Fenton, T.: Propranolol treatment for childhood posttraumatic stress disorder, acute type: a pilot study. Am. J. Dis. Child. 142, 124–127 (1988). Medline:3177336CrossRefGoogle Scholar
  12. 12.
    Foote, S.L., Aston-Jones, G., Bloom, E.F.: Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Natl. Acad. Sci. USA 77, 3033–3037 (1980)CrossRefGoogle Scholar
  13. 13.
    Geracioti Jr., T.D., Baker, D.G., Ekhator, N.N., West, S.A., Hill, K.K., Bruce, A.B., Schmidt, D., RoundsKugler, B., Yehuda, R., Keck Jr., P.E., Kasckow, J.W.: CSF norepinephrine concentrations in posttraumatic stress disorder. Am. J. Psychiatry 144, 1511–1512 (1987)Google Scholar
  14. 14.
    Goenjian, A.: A mental health relief program in Armenia after the 1988 earthquake: implementation and clinical observations. Br. J. Psychiatry 163, 230–239 (1993)CrossRefGoogle Scholar
  15. 15.
    Green, B.L., Grace, M.C., Lindy, J.D., Glaser, G.C., Leonard, A.C., Crummier, T.L.: Buffalo creek survivors in the second decade: comparison with unexpected and nonlitigant Groups. J. Appl. Soc. Psychol. 20, 1033–1050 (1990)CrossRefGoogle Scholar
  16. 16.
    Horrigan, J.P., Barnhill, L.J.: The suppression of nightmares with guanfacine. J. Clin. Psychiatry 57, 371 (1996). Medline:8752021Google Scholar
  17. 17.
    Holden, J.E., Jeong, Y., Forrest, J.M.: The endogenous opioid system and clinical pain management. Am. Assoc. Crit. Care Nurses 16(3), 291–301 (2005)Google Scholar
  18. 18.
    Isper, C.J., Stein, D.J.: Evidence-based pharmacotherapy of post-traumatic stress disorder (PTSD). Int. J. Neuropsychopharmacol. 15, 825–840 (2012).  https://doi.org/10.1017/S1461145711001209CrossRefGoogle Scholar
  19. 19.
    Kolb, L.C., Burris, B.C., Griffith, S.: Propranolol and clonidine in the treatment of post-traumatic stress disorder of war. Psychological and Biological Sequel, pp.98–105. American Psychiatric Press (1984)Google Scholar
  20. 20.
    Kozarić-Kovačić, D.: Psychopharmacotherapy of posttraumatic stress disorder. Croat. Med. J. 49(4), 459–475 (2008).  https://doi.org/10.3325/cmj.2008.4.459. PMID:18716993CrossRefGoogle Scholar
  21. 21.
    Kulka, R.A., et al.: Trauma and the Vietnam Veterans Study, Bruner/Mazel (1990)Google Scholar
  22. 22.
    Lemke, K.A.: Perioperative use of selective agonists and antagonists in small animals. Can. Vet. J. 45(6), 475–80 (2004). PMC 548630. PMID 15283516Google Scholar
  23. 23.
    North, C.S., Smith, E.M., Spitzangel, E.L.: Posttraumatic stress disorder in survivors of a mass shooting. Am. J. Psychiatry 151, 82–88 (1994)CrossRefGoogle Scholar
  24. 24.
    O’Donnell, T., Hegadoren, K.M., Coupland, N.C.: Noradrenergic mechanisms in the pathophysiology of post-traumatic stress disorder. Neuropsychobiology 50, 273–283 (2004)CrossRefGoogle Scholar
  25. 25.
    Ranabir, S., Reetu, K.: Stress and hormones. Indian J. Endocrinol. Metab. 15(1), 18–22 (2011)CrossRefGoogle Scholar
  26. 26.
    Raskind, M.A., Dobie, D.J., Kanter, E.D., Petrie, E.C., Thompson, C.E., Peskind, E.R.: The alpha1-adregeneric antagonist prazosin ameliorates combat trauma nightmares in veterans with posttraumatic stress disorder: a report of 4 cases. J. Clin. Psychiatry 61, 129–33 (2000). Medline:10732660CrossRefGoogle Scholar
  27. 27.
    Ronzoni, G., del Arco, A., Mora, F., Seovia, G.: Enhanced noradrenergic activity in the amygdala contributes to hyperarousal in an animal model of PTSD. Psychoneuroendocrionology 70, 1–9 (2016)CrossRefGoogle Scholar
  28. 28.
    Saxe, G., et al.: Relationship between acute morphine and the course of PTSD in children with burns. J. Am. Acad. Child Adolesc. Psychiatry 40, 915–921 (2001)CrossRefGoogle Scholar
  29. 29.
    Saper, C.B.: Function of the locus coeruleus. Trends Neurosci. 10, 343–344 (1987)CrossRefGoogle Scholar
  30. 30.
    Southwick, S.M., et al.: Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry 54, 749–758 (1997)CrossRefGoogle Scholar
  31. 31.
    Stidd, D.A., Vogelsang, K., Krahl, S.E., Langevin, J.P., Fellous, J.M.: Amygdala deep brain stimulation is superior to paroxetine treatment in a rat model of posttraumatic stress disorder. Brain Stimul. 6, 837–844 (2013)CrossRefGoogle Scholar
  32. 32.
    Tanaka, M., Yoshida, M., Emoto, H., Ishii, H.: NA systems in the hypathalamous, amygdala and LC are involved in the provocation of anxiety: basic studies. Eur. J. Pharmacol. 405, 397–406 (2000)CrossRefGoogle Scholar
  33. 33.
    Treur, J.: Network-Oriented Modeling: Addressing Complexity of Cognitive, Affective and Social Interactions. Springer Publishers, Cham (2016).  https://doi.org/10.1007/978-3-319-45213-5CrossRefzbMATHGoogle Scholar
  34. 34.
    Valentino, R.J., Page, M.E., Curtis, A.L.: Activation of noradrenergic locus coeruleus neurons by hemodynamic stress is due too local release of corticotropin-releasing factor. Brain Res. 555, 25–34 (1991)CrossRefGoogle Scholar
  35. 35.
    Valentino, R.J., Van Bockstaele, E.: Opposing regulation factor and opioids: potential for reciprocal interactions between stress and opioid sensitivity. Psychopharmacology 158, 331–342 (2001)CrossRefGoogle Scholar
  36. 36.
    Ziabari, S.S.M, Treur, J.: Cognitive modelling of mindfulness therapy by autogenic training. In: Proceedings of the 5th International Conference on Information System Design and Intelligent Applications, (INDIA 2018). Advances in Intelligent Systems and Computing. Springer, Mauritius (2018, in press)Google Scholar
  37. 37.
    Ziabari, S.S.M, Treur, J.: Computational analysis of gender differences in coping with extreme stressful emotions. In: Proceedings of the 9th International Conference on Biologically Inspired Cognitive Architecture (BICA2018). Elsevier, Czech Republic (2018)Google Scholar
  38. 38.
    Ziabari, S.S.M, Treur, J.: An adaptive cognitive temporal-causal network model of a mindfulness therapy based on music. In: Proceedings of the 10th International Conference on Intelligent Human Computer Interaction (IHCI2018). Springer, India (2018, in press)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Behavioural Informatics GroupVrije Universiteit AmsterdamAmsterdamNetherlands

Personalised recommendations