Advertisement

Mortal Organisms Rescue Immortal Organisms from Evolutionary Inertness: Perspective of the Programmed Self-decomposition Model

  • Tadao Maekawa
  • Manabu Honda
  • Osamu Ueno
  • Tsutomu Oohashi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11324)

Abstract

Our previous molecular cell biology studies on altruistic phenomena suggested that altruistic self-decomposition for the greater good is universally embedded in living organisms. Our artificial life simulations also showed that by promoting evolutionary adaptation in a global environment, which has finite, heterogeneous conditions, mortal organisms with altruistic self-decomposition prosper better than immortal organisms. In addition, we recently reported notable results showing that mortal organisms capable of self-decomposition emerged from indigenous immortal organisms through mutation; such mortal organisms survived and left behind offspring, albeit very rarely, but when they survived, they surpassed immortal organisms without exception. Our present focus was to determine if the altruistic contribution of mortal organisms to the ecosystem provided an optimum solution for an evolutionary dead end. In our simulations, the residual lysing (Lyse: To break down into smaller molecules.) activity after self-decomposition of mortal organisms enabled immortal organisms at a standstill of proliferation to resume proliferation by recycling materials and space. Those immortal organisms then proceeded through evolutionary adaptation to inhabit a new environment. Mortal organisms, however, were shown to be more predominant and ultimately surpassed immortal organisms, causing the latter to perish naturally. Our results raise the possibility that the global ecosystem obtained an optimum solution for the ecosystem by ultimately selecting an altruistic life.

Keywords

Artificial life Altruism Autolysis Death Evolution Ecosystem 

References

  1. 1.
    Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).  https://doi.org/10.1126/science.1133755CrossRefGoogle Scholar
  2. 2.
    Fehr, E., Fischbacher, U.: The nature of human altruism. Nature 425, 785–791 (2003).  https://doi.org/10.1038/nature02043CrossRefGoogle Scholar
  3. 3.
    Perc, M., Szolnoki, A.: Coevolutionary games—a mini review. BioSystems 99, 109–125 (2010).  https://doi.org/10.1016/j.biosystems.2009.10.003CrossRefGoogle Scholar
  4. 4.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. U. S. A. 103, 3490–3494 (2006).  https://doi.org/10.1073/pnas.0508201103CrossRefGoogle Scholar
  5. 5.
    Santos, F.C., Pinheiro, F.L., Lenaerts, T., Pacheco, J.M.: The role of diversity in the evolution of cooperation. J. Theor. Biol. 299, 88–96 (2012).  https://doi.org/10.1016/j.jtbi.2011.09.003MathSciNetCrossRefGoogle Scholar
  6. 6.
    Oohashi, T., Nakata, D., Kikuta, T., Murakami, K.: Programmed self-decomposition model (in Japanese). Kagakukisoron 18, 21–29 (1987)Google Scholar
  7. 7.
    Oohashi, T., Sayama, H., Ueno, O., Maekawa, T.: Artificial life based on programmed self-decomposition model, in Technical report. ATR Human Information Processing Research Laboratories (1996)Google Scholar
  8. 8.
    Oohashi, T., Maekawa, T., Ueno, O., Nishina, E., Kawai, N.: Requirements for immortal ALife to exterminate mortal ALife in one finite, heterogeneous ecosystem. In: Floreano, D., Nicoud, J.-D., Mondada, F. (eds.) ECAL 1999. LNCS (LNAI), vol. 1674, pp. 49–53. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48304-7_9CrossRefGoogle Scholar
  9. 9.
    Oohashi, T., Maekawa, T., Ueno, O., Kawai, N., Nishina, E., Shimohara, K.: Artificial life based on the programmed self-decomposition model, SIVA. Artif. Life Robot. 5, 77–87 (2001).  https://doi.org/10.1007/bf02481343CrossRefGoogle Scholar
  10. 10.
    Oohashi, T., Maekawa, T., Ueno, O., Honda, M.: The supremacy of the altruistic gene: Terrestrial life has succeeded in breaking through evolutionary deadlock. Kagaku 81, 83–90 (2011). (in Japanese)Google Scholar
  11. 11.
    Maekawa, T., Ueno, O., Kawai, N., Nishina, E., Honda, M., Oohashi, T.: Evolutionary acquisition of genetic program for death. In: The Eleventh European Conference on the Synthesis and Simulation of Living Systems, ECAL 2011, pp 481–486. The MIT Press, Paris (2011)Google Scholar
  12. 12.
    Maekawa, T., Honda, M., Kawai, N., Nishina, E., Ueno, O., Oohashi, T.: Heterogeneity and complexity of a simulated terrestrial environment account for superiority of the altruistic gene. In: The European Conference on Artificial Life 2013, ECAL 2013, pp. 250–257. The MIT Press, Taormina (2013)Google Scholar
  13. 13.
    Oohashi, T., Maekawa, T., Ueno, O., Kawai, N., Nishina, E., Honda, M.: Evolutionary acquisition of a mortal genetic program: the origin of an altruistic gene. Artif. Life 20, 95–110 (2014).  https://doi.org/10.1162/ARTL_a_00098CrossRefGoogle Scholar
  14. 14.
    Oohashi, T., Ueno, O., Maekawa, T., Kawai, N., Nishina, E., Honda, M.: An effective hierarchical model for the biomolecular covalent bond: an approach integrating artificial chemistry and an actual terrestrial life system. Artif. Life 15, 29–58 (2009).  https://doi.org/10.1162/artl.2009.15.1.15103CrossRefGoogle Scholar
  15. 15.
    Odum, E.P.: Fundamentals of Ecology, 3rd edn. W.B. Saunders Company, Philadelphia (1971)Google Scholar
  16. 16.
    Von Neumann, J.: The general and logical theory of automata. In: Jeffress, L.A. (ed.) Cerebral Mechanisms in Behavior - The Hixon Symposium, pp. 1–41. Wiley, New York (1951)Google Scholar
  17. 17.
    Suzuki, H.: Network artificial chemistry - molecular interaction represented by a graph. In: Ninth International Conference on the Simulation and Synthesis of Living Systems (ALIFE9) Workshop and Tutorial, Boston, MA (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tadao Maekawa
    • 1
  • Manabu Honda
    • 2
  • Osamu Ueno
    • 2
  • Tsutomu Oohashi
    • 3
  1. 1.Yokkaichi UniversityYokkaichiJapan
  2. 2.Department of Functional Brain ResearchNational Center of Neurology and PsychiatryKodairaJapan
  3. 3.Foundation for Advancement of International ScienceTsukubaJapan

Personalised recommendations