Advertisement

A Hierarchical Approach to Grammar-Guided Genetic Programming: The Case of Scheduling in Heterogeneous Networks

  • Takfarinas Saber
  • David Fagan
  • David Lynch
  • Stepan Kucera
  • Holger Claussen
  • Michael O’Neill
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11324)

Abstract

Grammar-Guided Genetic Programming has shown its capability to evolve beyond human-competitive transmission schedulers for the benefit of large and heterogeneous communications networks. Despite this performance, a large margin of improvement is demonstrated to still exist. We have recently proposed a multi-level grammar approach which evolves structurally interesting individuals using a small grammar, before introducing a thorough grammar to probe a larger search space and evolve better-performing individuals. We investigate the advantage of using a hierarchical approach with multiple small grammars at the lower level instead of a unique one, in conjunction with a full grammar at the upper level. While we confirm in our experiment that the multi-level approach outperforms the use of a unique grammar, we demonstrate that two hierarchical grammar configurations achieve significantly better results than the multi-level approach. We also show the existence of an ideal number of small grammars that could be used in the lower level of the hierarchical approach to achieve the best performance.

Keywords

Genetic programming Telecommunications Hierarchical grammar-guided genetic programming Heterogeneous network 

Notes

Acknowledgement

This research is based upon works supported by the Science Foundation Ireland under Grant No. 13/IA/1850.

References

  1. 1.
    3gpp: The 3rd generation partnership project. www.3gpp.org
  2. 2.
    Fagan, D., Fenton, M., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: Deep learning through evolution: a hybrid approach to scheduling in a dynamic environment. In: IJCNN, pp. 775–782 (2017)Google Scholar
  3. 3.
    Fenton, M., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: Multilayer optimization of heterogeneous networks using grammatical genetic programming. IEEE Trans. Cybern. 47, 2938–2950 (2017)CrossRefGoogle Scholar
  4. 4.
    Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill, M.: Ponyge2: Grammatical evolution in python. In: GECCO, pp. 1194–1201 (2017)Google Scholar
  5. 5.
    Lynch, D., Fenton, M., Kucera, S., Claussen, H., O’Neill, M.: Scheduling in heterogeneous networks using grammar-based genetic programming. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 83–98. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30668-1_6CrossRefGoogle Scholar
  6. 6.
    Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’neill, M.: Grammar-based genetic programming: a survey. Genet. Program Evolvable Mach. 11, 365–396 (2010)CrossRefGoogle Scholar
  7. 7.
    Saber, T., Brevet, D., Botterweck, G., Ventresque, A.: Is seeding a good strategy in multi-objective feature selection when feature models evolve? Inf. Softw. Technol. 95, 266–280 (2017)CrossRefGoogle Scholar
  8. 8.
    Saber, T., Delavernhe, F., Papadakis, M., O’Neill, M., Ventresque, A.: A hybrid algorithm for multi-objective test case selection. In: CEC (2018)Google Scholar
  9. 9.
    Saber, T., Fagan, D., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: Multi-level grammar genetic programming for scheduling in heterogeneous networks. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 118–134. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77553-1_8CrossRefGoogle Scholar
  10. 10.
    Saber, T., Marques-Silva, J., Thorburn, J., Ventresque, A.: Exact and hybrid solutions for the multi-objective vm reassignment problem. Int. J. Artif. Intell. Tools 26, 1760004 (2017)CrossRefGoogle Scholar
  11. 11.
    Saber, T., Thorburn, J., Murphy, L., Ventresque, A.: VM reassignment in hybrid clouds for large decentralised companies: A multi-objective challenge. Futur. Gener. Comput. Syst. 79, 751–764 (2018)CrossRefGoogle Scholar
  12. 12.
    Saber, T., Ventresque, A., Brandic, I., Thorburn, J., Murphy, L.: Towards a multi-objective VM reassignment for large decentralised data centres. In: UCC, pp. 65–74 (2015)Google Scholar
  13. 13.
    Saber, T., Ventresque, A., Gandibleux, X., Murphy, L.: GeNePi: a multi-objective machine reassignment algorithm for data centres. In: Blesa, M.J., Blum, C., Voß, S. (eds.) HM 2014. LNCS, vol. 8457, pp. 115–129. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07644-7_9CrossRefGoogle Scholar
  14. 14.
    Saber, T., Ventresque, A., Marques-Silva, J., Thorburn, J., Murphy, L.: MILP for the multi-objective VM reassignment problem. In: ICTAI, pp. 41–48 (2015)Google Scholar
  15. 15.
    Saber, T., Ventresque, A., Murphy, J.: Rothar: real-time on-line traffic assignment with load estimation. In: DS-RT, pp. 79–86 (2013)Google Scholar
  16. 16.
    Statista: Forecast of mobile phone users worldwide 2018 (2018). www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
  17. 17.
    Tall, A., Altman, Z., Altman, E.: Self organizing strategies for enhanced ICIC (eicic). In: WiOpt, pp. 318–325 (2014)Google Scholar
  18. 18.
    Weber, A., Stanze, O.: Scheduling strategies for hetnets using eicic. In: ICC, pp. 6787–6791 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Natural Computing Research and Applications Group, School of BusinessUniversity College DublinDublinIreland
  2. 2.Bell LaboratoriesNokiaDublinIreland

Personalised recommendations