Automated Design of Genetic Programming Classification Algorithms for Financial Forecasting Using Evolutionary Algorithms

  • Thambo NyathiEmail author
  • Nelishia Pillay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11324)


In this work two metaheuristic algorithms namely, a genetic algorithm (GA) and grammatical evolution (GE) are used to configure genetic programming classification algorithms for financial forecasting. The performance of the classifiers evolved through a GA and GE design are compared to the performance of classifiers evolved using the traditional manual design approach. Fifteen stocks from varied sectors are selected to evaluate the performance. Additionally, the fitness landscape of the design space evolved by grammatical evolution and the genetic algorithm is evaluated. Results demonstrate that GE designed algorithms evolve classifiers that perform better than those designed by a GA and manually designed. Furthermore, it is established that the GA design space is more rugged than the GE design space.


Genetic programming Grammatical evolution Genetic algorithms Financial forecasting Classification 


  1. 1.
    Atsalakis, G.S., Valavanis, K.P.: Surveying stock market forecasting techniques-part II: Soft computing methods. Expert. Syst. Appl. 36(3), 5932–5941 (2009)CrossRefGoogle Scholar
  2. 2.
    Chen, S.H., Yeh, C.H., Lee, W.C.: Option pricing with genetic programming. In: Genetic Programming 1998: Proceedings of the Third, pp. 32–37. Morgan Kaufmann (1998)Google Scholar
  3. 3.
    Dobslaw, F.: A parameter tuning framework for metaheuristics based on design of experiments and artificial neural networks. In: International Conference on Computer Mathematics and Natural Computing. WASET (2010)Google Scholar
  4. 4.
    Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in evolutionary algorithms. In: Parameter setting in evolutionary algorithms, pp. 19–46. Springer (2007)Google Scholar
  5. 5.
    Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic programming to classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(2), 121–144 (2010)CrossRefGoogle Scholar
  6. 6.
    Fernández-Blanco, P., Bodas-Sagi, D.J., Soltero, F.J., Hidalgo, J.I.: Technical market indicators optimization using evolutionary algorithms. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1851–1858. ACM (2008)Google Scholar
  7. 7.
    Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)CrossRefGoogle Scholar
  8. 8.
    Haraldsson, S.O., Woodward, J.R.: Automated design of algorithms and genetic improvement: contrast and commonalities. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1373–1380. ACM (2014)Google Scholar
  9. 9.
    Hutter, F.: Automated configuration of algorithms for solving hard computational problems. Ph.D. thesis, University of British Columbia (2009)Google Scholar
  10. 10.
    Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on local search. In: AAAI, vol. 7, pp. 1152–1157 (2007)Google Scholar
  11. 11.
    Iba, H., Sasaki, T.: Using genetic programming to predict financial data. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 1, pp. 244–251. IEEE (1999)Google Scholar
  12. 12.
    Kaboudan, M.A.: Genetic programming prediction of stock prices. Comput. Econ. 16(3), 207–236 (2000)CrossRefGoogle Scholar
  13. 13.
    Kampouridis, M., Tsang, E.: EDDIE for investment opportunities forecasting: extending the search space of the GP. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)Google Scholar
  14. 14.
    Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)CrossRefGoogle Scholar
  15. 15.
    Li, J.: FGP: a genetic programming based tool for financial forecasting. Ph.D. thesis, University of Essex (2000)Google Scholar
  16. 16.
    Maden, İ., Uyar, A., Ozcan, E.: Landscape analysis of simple perturbative hyperheuristics. In: Mendel, vol. 2009, p. 15th (2009)Google Scholar
  17. 17.
    Nyathi, T., Pillay, N.: Automated design of genetic programming classification algorithms using a genetic algorithm. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10200, pp. 224–239. Springer, Cham (2017). Scholar
  18. 18.
    Nyathi, T., Pillay, N.: Comparison of a genetic algorithm to grammatical evolution for automated design of genetic programming classification algorithms. Expert Syst. Appl. 104, 213–234 (2018)CrossRefGoogle Scholar
  19. 19.
    Ochoa, G., Qu, R., Burke, E.K.: Analyzing the landscape of a graph based hyper-heuristic for timetabling problems. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 341–348. ACM (2009)Google Scholar
  20. 20.
    Otero, F.E.B., Kampouridis, M.: A comparative study on the use of classification algorithms in financial forecasting. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 276–287. Springer, Heidelberg (2014). Scholar
  21. 21.
    Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: Evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). Scholar
  22. 22.
    Tapia, M.G.C., Coello, C.A.C.: Applications of multi-objective evolutionary algorithms in economics and finance: a survey. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 532–539. IEEE (2007)Google Scholar
  23. 23.
    Tsang, E.P., Li, J., Butler, J.M.: EDDIE beats the bookies. Softw. Pract. Exp. 28(10), 1033–1043 (1998)Google Scholar
  24. 24.
    Wang, P., Tsang, E.P., Weise, T., Tang, K., Yao, X.: Using GP to evolve decision rules for classification in financial data sets. In: 2010 9th IEEE International Conference on Cognitive Informatics (ICCI), pp. 720–727. IEEE (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
  2. 2.Department of Computer ScienceUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations