Explainable AI and Fuzzy Logic Systems

  • Ravikiran Chimatapu
  • Hani HagrasEmail author
  • Andrew Starkey
  • Gilbert Owusu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11324)


The recent advances in computing power coupled with the rapid increases in the quantity of available data has led to a resurgence in the theory and applications of Artificial Intelligence (AI). However, the use of complex AI algorithms like Deep Learning, Random Forests, etc., could result in a lack of transparency to users which is termed as black/opaque box models. Thus, for AI to be trusted and widely used by governments and industries, there is a need for greater transparency through the creation of explainable AI (XAI) systems. In this paper, we introduce the concepts of XAI and give an overview of hybrid systems which employ fuzzy logic systems which can hold great promise for creating trusted and explainable AI systems.


Explainable AI XAI Deep fuzzy systems Fuzzy logic systems 


  1. 1.
    Purdy, M., Daugherty, P.: Why artificial intelligence is the future of growth. In: Remarks at AI Now: The Social and Economic Implications of Artificial Intelligence Technologies in the Near Term, pp. 1–72 (2016)Google Scholar
  2. 2.
    Nott, G.: Explainable artificial intelligence’: cracking open the black box of AI. Computer World (2017).
  3. 3.
    Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 30 (2018)MathSciNetGoogle Scholar
  4. 4.
    Board, F.S.: Artificial intelligence and machine learning in financial services. November (2017). Accessed 30 Jan 2018
  5. 5.
    AI in the UK: ready, willing and able?. UK Parliament (House of Lords) Aritificial Intelligence Committee, 16 April 2017.
  6. 6.
    Thelisson, E., Padh, K., Celis, L.E.: Regulatory mechanisms and algorithms towards trust in AI/ML (2017) Google Scholar
  7. 7.
    Gunning, D.: Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web (2017)Google Scholar
  8. 8.
    Wierzynski, C.: The Challenges and Opportunities of Explainable AI (2017).
  9. 9.
    Weller, A.: Challenges for transparency. arXiv preprint arXiv:1708.01870 (2017)
  10. 10.
    Goodman, S.B.F.: European Union regulations on algorithmic decision-making and a “right to explanation”. In: 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, NY (2016)Google Scholar
  11. 11.
    Holzinger, A., Plass, M., Holzinger, K., Crisan, G.C., Pintea, C.-M., Palade, V.: A glass-box interactive machine learning approach for solving NP-hard problems with the human-in-the-loop. arXiv preprint arXiv:1708.01104 (2017)
  12. 12.
    Montavon, G., Samek, W., Müller, K.-R.: Methods for interpreting and understanding deep neural networks. Digital Signal Processing (2017)Google Scholar
  13. 13.
    Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)CrossRefGoogle Scholar
  14. 14.
    Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the predictions of any classifier, pp. 1135–1144 (ACM)Google Scholar
  15. 15.
    Ribeiro, M.T., Singh, S., Guestrin, C.: Nothing else matters: model-agnostic explanations by identifying prediction invariance. arXiv preprint arXiv:1611.05817 (2016)
  16. 16.
    Merentitis, A., Debes, C.: Automatic fusion and classification using random forests and features extracted with deep learning, pp. 2943–2946. IEEE (2015)Google Scholar
  17. 17.
    Yang, Y., Morillo, I.G., Hospedales, T.M.: Deep neural decision trees. arXiv preprint arXiv:1806.06988 (2018)
  18. 18.
    Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice Hall, Upper Saddle River (2001)zbMATHGoogle Scholar
  19. 19.
    Sanz, J.A., Bernardo, D., Herrera, F., Bustince, H., Hagras, H.: A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data. IEEE Trans. Fuzzy Syst. 23(4), 973–990 (2015)CrossRefGoogle Scholar
  20. 20.
    Antonelli, M., Bernardo, D., Hagras, H., Marcelloni, F.: Multiobjective evolutionary optimization of Type-2 fuzzy rule-based systems for financial data classification. IEEE Trans. Fuzzy Syst. 25(2), 249–264 (2017)CrossRefGoogle Scholar
  21. 21.
    Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.-Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)Google Scholar
  22. 22.
    Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Shin, H., Orton, M., Collins, D., Doran, S., Leach, M.: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1930–1943 (2013)CrossRefGoogle Scholar
  24. 24.
    Koza, J.R.: EBSCOhost eBook Collection, Genetic Programming on the Programming of Computers by Means of Natural Selection (Complex adaptive systems), pp. xiv. MIT Press, Cambridge, Mass (1992). 819 pGoogle Scholar
  25. 25.
    Cordón, O.: A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int. J. Approx. Reasoning 52(6), 894–913 (2011)CrossRefGoogle Scholar
  26. 26.
    Chen, P., Zhang, C., Chen, L., Gan, M.: Fuzzy restricted Boltzmann machine for the enhancement of deep learning. IEEE Trans. Fuzzy Syst. 23(6), 2163–2173 (2015)CrossRefGoogle Scholar
  27. 27.
    Deng, Y., Ren, Z., Kong, Y., Bao, F., Dai, Q.: A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans. Fuzzy Syst. 25(4), 1006–1012 (2017)CrossRefGoogle Scholar
  28. 28.
    Park, S., Lee, S.J., Weiss, E., Motai, Y.: Intra-and inter-fractional variation prediction of lung tumors using fuzzy deep learning. IEEE J. Trans. Eng. Health Med. 4, 1–12 (2016)CrossRefGoogle Scholar
  29. 29.
    Rajurkar, S., Verma, N.K.: Developing deep fuzzy network with takagi sugeno fuzzy inference system, pp. 1–6. IEEE (2017)Google Scholar
  30. 30.
    Zhou, S., Chen, Q., Wang, X.: Fuzzy deep belief networks for semi-supervised sentiment classification. Neurocomputing 131, 312–322 (2014)CrossRefGoogle Scholar
  31. 31.
    Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, pp. 153–160 (2007)Google Scholar
  32. 32.
    Wang, M., Hua, X.-S.: Active learning in multimedia annotation and retrieval: a survey. ACM Trans. Intell. Syst. Technol. (TIST) 2(2), 10 (2011)Google Scholar
  33. 33.
    Zheng, Y., Sheng, W., Sun, X., Chen, S.: Airline passenger profiling based on fuzzy deep machine learning. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 2911–2923 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yager, R.R.: Pythagorean fuzzy subsets, pp. 57–61. IEEEGoogle Scholar
  35. 35.
    Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014)CrossRefGoogle Scholar
  36. 36.
    Chimatapu, R., Hagras, H., Starkey, A., Owusu, G.: Interval type-2 fuzzy logic based stacked autoencoder deep neural network for generating explainable ai models in workforce optimization. In: presented at the 2018 IEEE international conference on fuzzy systems (FUZZ), in pressGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ravikiran Chimatapu
    • 1
  • Hani Hagras
    • 1
    Email author
  • Andrew Starkey
    • 2
  • Gilbert Owusu
    • 2
  1. 1.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK
  2. 2.Business Modelling and Operational Transformation PracticeBritish TelecomIpswichUK

Personalised recommendations