Advertisement

Introduction to Higgs Boson Pair Production

  • Luca Cadamuro
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The chapter presents the motivations for the search of Higgs boson pair production at the CERN LHC and discusses the theoretical foundations of this work. After an overview of the standard model of particle physics (SM), with a special focus on the scalar sector and its role in the electroweak symmetry breaking, the importance of Higgs boson pair (HH) production in the SM exploration is discussed. The main HH production modes at the LHC are presented and the properties of the HH signal desribed. The chapter then discusses HH production in scenarios of physics beyond the SM, that predict either the presence of new scalars decaying to HH (resonant production), or the existence of anomalous Higgs boson couplings that modify the HH cross section and the signal kinematic properties (nonresonant production). Finally, the HH decay channels used in the experimental study of this process are described and the current status of searches for HH production at the LHC presented.

References

  1. 1.
    F. Englert, R. Brout, Broken symmetry and the mass of Gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964).  https://doi.org/10.1103/PhysRevLett.13.321ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    P.W. Higgs, Broken symmetries and the masses of Gauge bosons. Phys. Rev. Lett. 13, 508 (1964).  https://doi.org/10.1103/PhysRevLett.13.508ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964).  https://doi.org/10.1103/PhysRevLett.13.585ADSCrossRefGoogle Scholar
  4. 4.
    J. Goldstone, Field theories with superconductor solutions. II Nuovo Cimento (1955–1965) 19, 154 (1961).  https://doi.org/10.1007/BF02812722ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    G. Hooft, Renormalizable Lagrangians for massive Yang-Mills fields. Nucl. Phys. B 35, 167 (1971).  https://doi.org/10.1016/0550-3213(71)90139-8ADSCrossRefGoogle Scholar
  6. 6.
    ATLAS Collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012).  https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214ADSCrossRefGoogle Scholar
  7. 7.
    CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012).  https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235ADSCrossRefGoogle Scholar
  8. 8.
    CMS Collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \(\sqrt{s}\) = 7 and 8 TeV. JHEP 06, 081 (2013).  https://doi.org/10.1007/JHEP06(2013)081, arXiv:1303.4571
  9. 9.
    CMS Collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at sqrt(s) \(=\) 13 TeV, arXiv:1706.09936
  10. 10.
    ATLAS Collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36.1 fb\(^{-1}\)\(pp\) collision data at the center-of-mass energy of 13 TeV with the ATLAS detector, ATLAS Conference Note ATLAS-CONF-2017-045, CERN (2017), http://cds.cern.ch/record/2273852
  11. 11.
    CMS Collaboration, Search for Higgs boson production in association with top quarks in multilepton final states at \(\sqrt{s}=13~\rm TeV\), CMS Physics Analysis Summary CMS-PAS-HIG-17-004, CERN (2017), https://cds.cern.ch/record/2256103
  12. 12.
    CMS Collaboration, Measurements of properties of the Higgs boson in the diphoton decay channel with the full 2016 data set, CMS Physics Analysis Summary CMS-PAS-HIG-16-040, CERN (2017), https://cds.cern.ch/record/2264515
  13. 13.
    CMS Collaboration, Combined results of searches for the standard model Higgs boson in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Phys. Lett. B 710, 26 (2012).  https://doi.org/10.1016/j.physletb.2012.02.064, arXiv:1202.1488ADSCrossRefGoogle Scholar
  14. 14.
    CMS Collaboration, Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs. Phys. Rev. Lett. 110, 081803 (2013).  https://doi.org/10.1103/PhysRevLett.110.081803, arXiv:1212.6639
  15. 15.
    CMS Collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 \(\,\text{TeV}\). Eur. Phys. J. C 75, 212 (2015).  https://doi.org/10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662
  16. 16.
    ATLAS and CMS Collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV. JHEP 08, 045 (2016).  https://doi.org/10.1007/JHEP08(2016)045, arXiv:1606.02266
  17. 17.
    CMS Collaboration, Observation of the SM scalar boson decaying to a pair of \(\tau \) leptons with the CMS experiment at the LHC, CMS Physics Analysis Summary CMS-PAS-HIG-16-043, CERN (2017), https://cds.cern.ch/record/2264522
  18. 18.
    ATLAS Collaboration, Evidence for the \(H \rightarrow b\bar{b}\) decay with the ATLAS detector, ATLAS Conference Note ATLAS-CONF-2017-041, CERN (2017), http://cds.cern.ch/record/2273847
  19. 19.
    CMS Collaboration, Evidence for the decay of the Higgs boson to bottom quarks, CMS Physics Analysis Summary CMS-PAS-HIG-16-044, CERN (2017), https://cds.cern.ch/record/2278170
  20. 20.
    ATLAS Collaboration, Search for the dimuon decay of the Higgs boson in \(pp\) collisions at \(\sqrt{s} =\) 13 TeV with the ATLAS detector, arXiv:1705.04582
  21. 21.
    LHC Higgs cross section working group, handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector.  https://doi.org/10.23731/CYRM-2017-002, arXiv:1610.07922
  22. 22.
    G. Degrassi, M. Fedele, P.P. Giardino, Constraints on the trilinear Higgs self coupling from precision observables. JHEP 04, 155 (2017).  https://doi.org/10.1007/JHEP04(2017)155, arXiv:1702.01737
  23. 23.
    G. Degrassi, P.P. Giardino, F. Maltoni, D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC. JHEP 12, 080 (2016).  https://doi.org/10.1007/JHEP12(2016)080, arXiv:1607.04251
  24. 24.
    U. Haisch, Yukawas and trilinear Higgs terms from loops, in 52nd Rencontres de Moriond on EW Interactions and Unified Theories (Moriond EW 2017) La Thuile, Italy, 18–25 March 2017 (2017), https://inspirehep.net/record/1608022/files/arXiv:1706.09730.pdf
  25. 25.
    W. Bizon, M. Gorbahn, U. Haisch, G. Zanderighi, Constraints on the trilinear Higgs coupling from vector boson fusion and associated Higgs production at the LHC. JHEP 07, 083 (2017).  https://doi.org/10.1007/JHEP07(2017)083, arXiv:1610.05771
  26. 26.
    S. Di Vita et al., A global view on the Higgs self-coupling (2017), arXiv:1704.01953
  27. 27.
    E. Glover, J. van der Bij, Higgs boson pair production via gluon fusion. Nucl. Phys. B 309, 282 (1988).  https://doi.org/10.1016/0550-3213(88)90083-1ADSCrossRefGoogle Scholar
  28. 28.
    J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status. JHEP 04, 151 (2013).  https://doi.org/10.1007/JHEP04(2013)151, arXiv:1212.5581
  29. 29.
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects. Phys. Lett. B 732, 142 (2014).  https://doi.org/10.1016/j.physletb.2014.03.026, arXiv:1401.7340ADSCrossRefGoogle Scholar
  30. 30.
    F. Maltoni, G. Ridolfi, M. Ubiali, B-initiated processes at the LHC: a reappraisal. JHEP 07, 022 (2012).  https://doi.org/10.1007/JHEP04(2013)095,10.1007/JHEP07(2012)022, arXiv:1203.6393. [Erratum: JHEP04,095(2013)]
  31. 31.
    J. Elias-Miró et al., Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett. B 709, 222 (2012).  https://doi.org/10.1016/j.physletb.2012.02.013ADSCrossRefGoogle Scholar
  32. 32.
    F.L. Bezrukov, M. Shaposhnikov, The standard model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2008).  https://doi.org/10.1016/j.physletb.2007.11.072, arXiv:0710.3755ADSCrossRefGoogle Scholar
  33. 33.
    F. Bezrukov, The Higgs field as an inflaton. Class. Quant. Grav. 30, 214001 (2013).  https://doi.org/10.1088/0264-9381/30/21/214001, arXiv:1307.0708ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    T. Binoth, J.J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals. Z. Phys. C 75, 17 (1997).  https://doi.org/10.1007/s002880050442, arXiv:hep-ph/9608245
  35. 35.
    R.M. Schabinger, J.D. Wells, Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the CERN large hadron collider. Phys. Rev. D 72, 093007 (2005).  https://doi.org/10.1103/PhysRevD.72.093007, arXiv:hep-ph/0509209
  36. 36.
    B. Patt, F. Wilczek, Higgs-field portal into hidden sectors (2006), arXiv:hep-ph/0605188
  37. 37.
    D. López-Val, T. Robens, \(\Delta r\) and the W-boson mass in the singlet extension of the standard model. Phys. Rev. D 90, 114018 (2014).  https://doi.org/10.1103/PhysRevD.90.114018, arXiv:1406.1043
  38. 38.
    T. Robens, T. Stefaniak, LHC benchmark scenarios for the real Higgs singlet extension of the standard model. Eur. Phys. J. C 76, 268 (2016).  https://doi.org/10.1140/epjc/s10052-016-4115-8, arXiv:1601.07880
  39. 39.
    S. Dawson, I.M. Lewis, NLO corrections to double Higgs boson production in the Higgs singlet model. Phys. Rev. D 92, 094023 (2015).  https://doi.org/10.1103/PhysRevD.92.094023, arXiv:1508.05397
  40. 40.
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 516, 1 (2012).  https://doi.org/10.1016/j.physrep.2012.02.002, arXiv:1106.0034ADSCrossRefGoogle Scholar
  41. 41.
    E. Bagnaschi et al., Benchmark scenarios for low \(\tan \beta \) in the MSSM, LHC Cross Section Working Group Note LHCHXSWG-2015-002, CERN (2015), http://cds.cern.ch/record/2039911
  42. 42.
    A. Djouadi et al., The post-Higgs MSSM scenario: Habemus MSSM? Eur. Phys. J. C 73, 2650 (2013).  https://doi.org/10.1140/epjc/s10052-013-2650-0, arXiv:1307.5205
  43. 43.
    A. Djouadi et al., Fully covering the MSSM Higgs sector at the LHC. JHEP 06, 168 (2015).  https://doi.org/10.1007/JHEP06(2015)168, arXiv:1502.05653
  44. 44.
    S. Heinemeyer, Benchmark scenario for low tan\(\beta \) in the MSSM: first preliminary interim recommendation/suggestion (2014), https://twiki.cern.ch/twiki/pub/LHCPhysics/HXSWG3LowTanB/benchmark5-v0.pdf
  45. 45.
    CMS Collaboration, Summary results of high mass BSM Higgs searches using CMS run-I data, CMS Physics Analysis Summary CMS-PAS-HIG-16-007, CERN (2016), https://cds.cern.ch/record/2142432
  46. 46.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998).  https://doi.org/10.1016/S0370-2693(98)00466-3, arXiv:hep-ph/9803315ADSzbMATHCrossRefGoogle Scholar
  47. 47.
    A.L. Fitzpatrick, J. Kaplan, L. Randall, L.-T. Wang, Searching for the Kaluza-Klein graviton in bulk RS models. JHEP 09, 013 (2007).  https://doi.org/10.1088/1126-6708/2007/09/013, arXiv:hep-ph/0701150MathSciNetCrossRefGoogle Scholar
  48. 48.
    K. Agashe, H. Davoudiasl, G. Perez, A. Soni, Warped gravitons at the CERN LHC and beyond. Phys. Rev. D 76, 036006 (2007).  https://doi.org/10.1103/PhysRevD.76.036006, arXiv:hep-ph/0701186
  49. 49.
    L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999).  https://doi.org/10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    A. Oliveira, Gravity particles from warped extra dimensions, predictions for LHC (2014), arXiv:1404.0102
  51. 51.
    V. Barger, M. Ishida, Randall-Sundrum reality at the LHC. Phys. Lett. B 709, 185 (2012).  https://doi.org/10.1016/j.physletb.2012.01.073, arXiv:1110.6452ADSCrossRefGoogle Scholar
  52. 52.
    A. Efrati, Y. Nir, What if \(\lambda _{hhh}\ne 3m_h^2/v\) (2014), arXiv:1401.0935
  53. 53.
    L. Di Luzio, R. Gröber, M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how large could it be? (2017), arXiv:1704.02311
  54. 54.
    U. Baur, T. Plehn, D.L. Rainwater, Determining the Higgs boson selfcoupling at hadron colliders. Phys. Rev. D 67, 033003 (2003).  https://doi.org/10.1103/PhysRevD.67.033003, arXiv:hep-ph/0211224
  55. 55.
    B.W. Lee, C. Quigg, H.B. Thacker, Strength of weak interactions at very high energies and the Higgs boson mass. Phys. Rev. Lett. 38, 883 (1977).  https://doi.org/10.1103/PhysRevLett.38.883ADSCrossRefGoogle Scholar
  56. 56.
    A. Falkowski, R. Rattazzi, Which EFT? (2017). To appearGoogle Scholar
  57. 57.
    A. Carvalho et al., Analytical parametrization and shape classification of anomalous HH production in the EFT approach (2016), arXiv:1608.06578
  58. 58.
    F. Goertz, A. Papaefstathiou, L.L. Yang, J. Zurita, Higgs boson pair production in the D \(=\) 6 extension of the SM. JHEP 04, 167 (2015).  https://doi.org/10.1007/JHEP04(2015)167, arXiv:1410.3471
  59. 59.
    A. Carvalho et al., Higgs pair production: choosing benchmarks with cluster analysis. JHEP 04, 126 (2016).  https://doi.org/10.1007/JHEP04(2016)126, arXiv:1507.02245CrossRefGoogle Scholar
  60. 60.
    S. Dawson, C.W. Murphy, Standard model EFT and extended scalar sectors, arXiv:1704.07851
  61. 61.
    J. de Blas, M. Chala, M. Perez-Victoria, J. Santiago, Observable effects of general new scalar particles. JHEP 04, 078 (2015).  https://doi.org/10.1007/JHEP04(2015)078, arXiv:1412.8480
  62. 62.
    H. Bélusca-Maïto et al., Higgs EFT for 2HDM and beyond. Eur. Phys. J. C 77, 176 (2017).  https://doi.org/10.1140/epjc/s10052-017-4745-5, arXiv:1611.01112
  63. 63.
    F. del Aguila, M. Perez-Victoria, J. Santiago, Observable contributions of new exotic quarks to quark mixing. JHEP 09, 011 (2000).  https://doi.org/10.1088/1126-6708/2000/09/011, arXiv:hep-ph/0007316CrossRefGoogle Scholar
  64. 64.
    F. del Aguila, J. de Blas, M. Perez-Victoria, Effects of new leptons in electroweak precision data. Phys. Rev. D 78, 013010 (2008).  https://doi.org/10.1103/PhysRevD.78.013010, arXiv:0803.4008
  65. 65.
    G.F. Giudice, C. Grojean, A. Pomarol, R. Rattazzi, The strongly-interacting light Higgs. JHEP 06, 045 (2007).  https://doi.org/10.1088/1126-6708/2007/06/045, arXiv:hep-ph/0703164CrossRefGoogle Scholar
  66. 66.
    R. Contino et al., Effective Lagrangian for a light Higgs-like scalar. JHEP 07, 035 (2013).  https://doi.org/10.1007/JHEP07(2013)035, arXiv:1303.3876
  67. 67.
    R. Grober, M. Muhlleitner, Composite Higgs boson pair production at the LHC. JHEP 06, 020 (2011).  https://doi.org/10.1007/JHEP06(2011)020, arXiv:1012.1562
  68. 68.
    R. Contino, The Higgs as a composite Nambu-Goldstone boson, in Physics of the Large and the Small, TASI 09, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, USA, 1–26 June 2009, p. 235 (2011).  https://doi.org/10.1142/9789814327183_0005, arXiv:1005.4269
  69. 69.
    M.J. Dolan, C. Englert, M. Spannowsky, Higgs self-coupling measurements at the LHC. JHEP 10, 112 (2012).  https://doi.org/10.1007/JHEP10(2012)112, arXiv:1206.5001
  70. 70.
    A.J. Barr, M.J. Dolan, C. Englert, M. Spannowsky, Di-Higgs final states augMT2ed – selecting \(hh\) events at the high luminosity LHC. Phys. Lett. B 728, 308 (2014).  https://doi.org/10.1016/j.physletb.2013.12.011, arXiv:1309.6318ADSCrossRefGoogle Scholar
  71. 71.
    ATLAS Collaboration, Searches for Higgs boson pair production in the \(hh\rightarrow bb\tau \tau , \gamma \gamma WW^*, \gamma \gamma bb, bbbb\) channels with the ATLAS detector. Phys. Rev. D 92, 092004 (2015).  https://doi.org/10.1103/PhysRevD.92.092004, arXiv:1509.04670
  72. 72.
    ATLAS Collaboration, Search for Higgs boson pair production in the \(\gamma \gamma b\bar{b}\) final state using \(pp\) collision data at \(\sqrt{s}=8\) TeV from the ATLAS detector. Phys. Rev. Lett. 114, 081802 (2015).  https://doi.org/10.1103/PhysRevLett.114.081802, arXiv:1406.5053
  73. 73.
    ATLAS Collaboration, Search for Higgs boson pair production in the \(b\bar{b}\gamma \gamma \) final state using pp collision data at \(\sqrt{s}=13\) TeV with the ATLAS detector, ATLAS Conference Note ATLAS-CONF-2016-004, CERN (2016), http://cds.cern.ch/record/2138949
  74. 74.
    CMS Collaboration, A search for Higgs boson pair production in the \(bb\tau \tau \) final state in proton-proton collisions at \(\sqrt{s}\) = 8TeV (2017). Submitted to Phys. Rev. D, arXiv:1707.00350
  75. 75.
    CMS Collaboration, Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV. Phys. Rev. D 94, 052012 (2016).  https://doi.org/10.1103/PhysRevD.94.052012, arXiv:1603.06896
  76. 76.
    CMS Collaboration, Searches for heavy Higgs bosons in two-Higgs-doublet models and for \(t \rightarrow ch\) decay using multilepton and diphoton final states in \(pp\) collisions at 8 TeV. Phys. Rev. D 90, 112013 (2014).  https://doi.org/10.1103/PhysRevD.90.112013, arXiv:1410.2751
  77. 77.
    CMS Collaboration, Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks. Eur. Phys. J. C 76, 371 (2016).  https://doi.org/10.1140/epjc/s10052-016-4206-6, arXiv:1602.08762
  78. 78.
    CMS Collaboration, Search for resonant pair production of Higgs bosons decaying to \(b\bar{b}\) and \(\tau ^+\tau ^-\) in proton-proton collisions at \(\sqrt{s} = 8\) TeV, CMS Physics Analysis Summary CMS-PAS-EXO-15-008, CERN (2015), https://cds.cern.ch/record/2125293

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations