Apply Storytelling Techniques for Describing Time-Series Data

  • Zev BattadEmail author
  • Mei Si
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11318)


Narrative and storytelling have played an important role in communication. In this work, we demonstrate that the techniques of storytelling, and in particular raising attention to abnormality, can be used to add interestingness and memorability to descriptions of time-series data. A computational system has been developed for automatically generating descriptions for data graphs. The system identifies visual patterns in the graph, and treats the graph’s deviations from corresponding ideal patterns as abnormal events. It then uses storytelling templates to generate a graph description with the abnormal events highlighted.


Narrative Graph description Natural language generation 


  1. 1.
    Arnheim, R.: Art and visual perception. University of California Press (1974)Google Scholar
  2. 2.
    Bailey, T. Gatrell, A.: Interactive spatial data analysis. Longman Scientific & Technical Essex (1995)Google Scholar
  3. 3.
    Barlow, H.B., Reeves, B.C.: The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vis. Res. 19(7), 783–793 (1979)CrossRefGoogle Scholar
  4. 4.
    Bower, G.H., Black, J.B., Turner, T.J.: Scripts in memory for text. Cogn. Psychol. 11(2), 177–220 (1979)CrossRefGoogle Scholar
  5. 5.
    Boylen, C., Eichler, L., Swinton, M., Nierzwicki-Bauer, S., Hannoun, I., Short, J.: The State of the Lake: Thirty Years of Water Quality Monitoring on Lake George (2014).
  6. 6.
    Chatman, S.: Story and Discourse: Narrative Structure in Fiction and Film. Cornell University Press (1980)Google Scholar
  7. 7.
    Falk, J., Dierking, L.: The Museum Experience Revisited, 1st edn. Routledge, New York (2016)CrossRefGoogle Scholar
  8. 8.
    Freeman, H.: Description via the use of critical points. Pattern Recognit. 10, 159–166 (1978)CrossRefGoogle Scholar
  9. 9.
    Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Queue 10(2), 30 (2012)CrossRefGoogle Scholar
  10. 10.
    Hinrichs, U., Schmidt, H., Carpendale, S.: EMDialog: bringing information visualization into the museum. IEEE Trans. Vis. Comput. Graph. 14(6), 1181–1188 (2008)CrossRefGoogle Scholar
  11. 11.
    Lu, G., Zhang, D.: Review of shape representation and description techniques. Pattern Recognit. 37, 1–19 (2004)CrossRefGoogle Scholar
  12. 12.
    Machilsen, B., Pauwels, M., Wagemans, J.: The role of vertical mirror symmetry in visual shape detection. J. Vis. 9(12), 11–11 (2009)CrossRefGoogle Scholar
  13. 13.
    Palmer, S., Schloss, K., Sammartino, J.: Visual aesthetics and human preference. Annu. Rev. Psychol. 64, 77–107 (2013)CrossRefGoogle Scholar
  14. 14.
    Pallud, J.: Impact of interactive technologies on stimulating learning experiences in a museum. Inf. Manag. 54(4), 465–478 (2017)CrossRefGoogle Scholar
  15. 15.
    Robertson, N., et al.: DiscoverySpace: an interactive data analysis application. Genome Biol. 8(1), R6 (2007)CrossRefGoogle Scholar
  16. 16.
    Rubin, D.C.: Memory in oral traditions: The cognitive psychology of epic, ballads, and counting-out rhymes. Oxford University Press on Demand (1999)Google Scholar
  17. 17.
    Trabasso, T., Van Den Broek, P.: Causal thinking and the representation of narrative events. J. Mem. Lang. 24(5), 612–630 (1985)CrossRefGoogle Scholar
  18. 18.
    Thorndyke, P.W.: Cognitive structures in comprehension and memory of narrative discourse. Cogn. Psychol. 9(1), 77–110 (1979)CrossRefGoogle Scholar
  19. 19.
    Westphal-Fitch, G., Huber, L., Gomez, J.C., Fitch, W.T.: Production and per-ception rules underlying visual patterns: effects of symmetry and hierarchy. Phil. Trans. R. Soc. B 367(1598), 2007–2022 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations