Advertisement

Interactive Landslide Simulator: Role of Contextual Feedback in Learning Against Landslide Risks

  • Pratik ChaturvediEmail author
  • Varun Dutt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11278)

Abstract

Landslides cause extensive damages to property and life and there is an urgent need to increase community awareness against landslide risks. Interactive simulations help to provide people with experience of landslide disasters and increase community awareness. However, it would be interesting to evaluate the influence of contextual feedback via messages and images in people’s decision- making in these simulations. The main objective of this paper was to evaluate the role of contextual feedback in an interactive landslide simulator (ILS) tool. ILS considers both human and environmental factors to influence landslide risks. Fifty participants randomly participated across two between-subject conditions in the experiment: feedback-rich (messages and images present) and feedback-poor (numeric feedback only; messages and images absent). Participants made repeated monetary decisions against landslides in ILS. Investments were greater in the feedback-rich condition compared to feedback-poor condition. We highlight the implications of our results for awareness against landslide risks.

Keywords

Landslide risks Human factors Interactive simulation Contextual feedback Awareness 

Notes

Acknowledgement

We thank Akshit Arora for developing the website for ILS. We thank students of IIT Mandi who have helped in collection of data in this project.

References

  1. 1.
    Margottini, C., Canuti, P., Sassa, K.: Landslide science and practice. In: Proceedings of the Second World Landslide Forum, Rome, Italy, vol. 2 (2011)Google Scholar
  2. 2.
    Chaturvedi, P., Arora, A., Dutt, V.: Learning in an interactive simulation tool against landslide risks: the role of amount and availability of experiential feedback. Nat. Hazards Earth Syst. Sci. Discuss. (2017, in review).  https://doi.org/10.5194/nhess-2017-297
  3. 3.
    Chaturvedi, P., Arora, A., Dutt, V.: Interactive landslide simulator: a tool for landslide risk assessment and communication. In: Duffy, V. (ed.) Advances in Applied Digital Human Modeling and Simulation. AISC, vol. 481, pp. 231–243. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-41627-4_21CrossRefGoogle Scholar
  4. 4.
    Chaturvedi, P., et al.: Remote sensing based regional landslide risk assessment. Int. J. Emerg. Trends Electr. Electron. (IJETEE) 10(10) (2014). ISSN 2320-9569Google Scholar
  5. 5.
    Chaturvedi, P., Dutt, V.: Evaluating the public perceptions of landslide risks in the Himalayan Mandi Town. In: Proceedings of the 2015 Human Factor & Ergonomics Society (HFES) Annual Meeting, L.A (2015)Google Scholar
  6. 6.
    Eiser, J.R., et al.: Risk interpretation and action: a conceptual framework for responses to natural hazards. Int. J. Disaster Risk Reduct. 1, 5–16 (2012)CrossRefGoogle Scholar
  7. 7.
    Rogers, D., Tsirkunov, V.: Implementing hazard early warning systems. Report, Global Facility for Disaster Reduction and Recovery (2011)Google Scholar
  8. 8.
    Dai, F.C., Lee, C.F., Ngai, Y.Y.: Landslide risk assessment and management: an overview. Eng. Geol. 64(1), 65–87 (2002)CrossRefGoogle Scholar
  9. 9.
    Montrasio, L., Valentino, R., Losi, G.L.: Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale. Nat. Hazards Earth Syst. Sci. 11(7), 1927–1947 (2011)CrossRefGoogle Scholar
  10. 10.
    Meissen, U., Voisard, A.: Increasing the effectiveness of early warning via context-aware alerting. In: Proceedings of the 5th International Conference, on Information Systems for Crisis Response and Management (ISCRAM), pp. 431–440 (2008)Google Scholar
  11. 11.
    Sterman, J.D.: Learning in and about complex systems. Syst. Dyn. Rev. 10(2), 291–330 (1994)CrossRefGoogle Scholar
  12. 12.
    Schon, D.A.: The Reflective Practitioner: How Professionals Think in Action. Basic Books, New York (1983)Google Scholar
  13. 13.
    Sterman, J.D.: Risk communication on climate: mental models and mass balance. Science 377, 532–533 (2008)CrossRefGoogle Scholar
  14. 14.
    Ben-Asher, N., Meyer, J., Parmet, Y., Möller, S., Englert, R.: Security and usability research using a microworld environment. In: Proceedings of MobileHCI 2009, Bonn, Germany (2009)Google Scholar
  15. 15.
    Möller, S., Ben-Asher, N., Engelbrecht, K.P., Englert, R., Meyer, J.: Modeling the behavior of users who are confronted with security mechanisms. Comput. Secur. 30(4), 242–256 (2011)CrossRefGoogle Scholar
  16. 16.
    Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc., New York (1980)Google Scholar
  17. 17.
    Garson, G.: Computerized simulation in the social sciences. Simul. Gaming 40(2), 267–279 (2009)CrossRefGoogle Scholar
  18. 18.
    Dutt, V., Gonzalez, C.: The role of inertia in modeling decisions from experience with instance-based learning. Front. Psychol. 3, 177 (2012)CrossRefGoogle Scholar
  19. 19.
    Dutt, V., Gonzalez, C.: Decisions from experience reduce misconceptions about climate change. J. Environ. Psychol. 32(1), 19–29 (2012).  https://doi.org/10.1016/j.jenvp.2011.10.003CrossRefGoogle Scholar
  20. 20.
    Dutt, V., Gonzalez, C.: Reducing the linear perception of nonlinearity: use of a physical representation. J. Behav. Decis. Mak. 26, 51–67 (2013).  https://doi.org/10.1002/bdm.759CrossRefGoogle Scholar
  21. 21.
    Dutt, V., Gonzalez, C.: Responding linearly in nonlinear problems: application to earth’s climate. In: Carpenter, M., Shelton, E.J. (eds.) Carbon Dioxide Emissions: New Research, pp. 15–30. Nova Science Publishers, Hauppauge (2013)Google Scholar
  22. 22.
    Gonzalez, C., Ben-Asher, N., Martin, J.M., Dutt, V.: A cognitive model of dynamic cooperation with varied interdependency information. Cogn. Sci. 39(3), 457–495 (2015)CrossRefGoogle Scholar
  23. 23.
    Meadows, D., Sweeney, L.B., Mehers, G.M.: The Climate Change Playbook. Chelsea Green Publishing, White River Junction (2016)Google Scholar
  24. 24.
    Wagner, K.: Mental models of flash floods and landslides. Risk Anal. 27(3), 671–682 (2007)CrossRefGoogle Scholar
  25. 25.
    Bang, M., Torstensson, C., Katzeff, C.: The PowerHhouse: a persuasive computer game designed to raise awareness of domestic energy consumption. In: IJsselsteijn, W.A., de Kort, Y.A.W., Midden, C., Eggen, B., van den Hoven, E. (eds.) PERSUASIVE 2006. LNCS, vol. 3962, pp. 123–132. Springer, Heidelberg (2006).  https://doi.org/10.1007/11755494_18CrossRefGoogle Scholar
  26. 26.
    Dutt, V., Gonzalez, C.: Why do we want to delay actions on climate change? Effects of probability and timing of climate consequences. J. Behav. Decis. Mak. 25(2), 154–164 (2012)CrossRefGoogle Scholar
  27. 27.
    Isenberg, P., Elmqvist, N., Scholtz, J., Cernea, D., Ma, K.-L., Hagen, H.: Collaborative visualization: definition, challenges, and research agenda. Inf. Vis. 10(4), 310–326 (2011)CrossRefGoogle Scholar
  28. 28.
    Knutti, R., Joos, F., Müller, S.A., Plattner, G.K., Stocker, T.F.: Probabilistic climate change projections for CO2 stabilization profiles. Geophys. Res. Lett. 32(20) (2005)Google Scholar
  29. 29.
    Fischer, C.: Feedback on household electricity consumption: a tool for saving energy? Energ. Effi. 1(1), 79–104 (2008).  https://doi.org/10.1007/s12053-008-9009-7CrossRefGoogle Scholar
  30. 30.
    Lim, K.H., O’Connor, M.J., Remus, W.E.: The impact of presentation media on decision making: does multimedia improve the effectiveness of feedback? Inf. Manag. 42(2), 305–316 (2005)CrossRefGoogle Scholar
  31. 31.
    Hasson, R., Löfgren, Å., Visser, M.: Climate change in a public goods game: investment decision in mitigation versus adaptation. Ecol. Econ. 70(2), 331–338 (2011)CrossRefGoogle Scholar
  32. 32.
    Mathew, J., Babu, D.G., Kundu, S., Kumar, K.V., Pant, C.C.: Integrating intensity– duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India. Landslides 11(4), 575–588 (2014).  https://doi.org/10.1007/s10346-013-0408-2CrossRefGoogle Scholar
  33. 33.
    Anbalagan, R., Chakraborty, D., Kohali, A.: Landslide hazard zonation (LHZ) mapping on meso-scale for systematic town planning in mountainous terrain. J. Sci. Ind. Res. 67, 486–497 (2008)Google Scholar
  34. 34.
    Clerici, A., Perego, S., Tellini, C., Vescovi, P.: A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48(4), 349–364 (2002)CrossRefGoogle Scholar
  35. 35.
    Parkash, S.: Historical records of socio-economically significant landslides in India. J. South Asia Disaster Stud. 4(2), 177–204 (2011)MathSciNetGoogle Scholar
  36. 36.
    Census2011.co.in: Mandi District Population Census 2011, Himachal Pradesh literacy sex ratio and density (2017). http://www.census2011.co.in/census/district/233-mandi.html. Accessed 19 Nov 2017

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Applied Cognitive Science LabIndian Institute of Technology MandiKamandIndia
  2. 2.Defence Terrain Research LaboratoryDefence Research and Development OrganisationNew DelhiIndia

Personalised recommendations